Skip to main content
Log in

W-reactivation of phage lambda in recF, recL, uvrA, and uvrB mutants of E. coli K-12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

W-reactivation is reduced by recF143 and recF144 mutations and is undetectable if a second mutation at either the uvrA or uvrB locus is combined with recF143. The uvrA and uvrB mutations alone block W-reactivation partially. A recL152 mutation also partially blocks W-reactivation by itself. In combination with a uvrB5 mutation, recL125 blocks W-reactivation completely but in combination with recF143, significant residual W-reactivation ability remains. We suggest that the phenomenon of W-reactivation is the result of at least two modes or pathways. The observation that recF143 uvrB5 and recF143 uvrA6 strains permit normal levels of mutagenesis (Kato et al., 1977) but completely block all W-reactivation leads us to suggest further that the mechanism(s) of W-reactivation is at least partly different from that of UV mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armengod, M.-E., Blanco, M.: Influence of the recF143 mutation of Escherichia coli K-12 on prophage λ induction. Mutat. Res. 52, 37–47 (1978)

    Google Scholar 

  • Bachman, B.J.: Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 36, 525–557 (1972)

    Google Scholar 

  • Bachman, B.J., Low, K.B., Taylor, A.L.: A recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Boyce, R.P., Howard-Flanders, P.: Release of ultraviolet lightinduced thymine dimers from DNA in E. coli K-12. Proc. Natl. Acad. Sci. U.S.A. 51, 293–300 (1964)

    Google Scholar 

  • Boyle, J.M., Patterson, M.C., Setlow, R.B.: Excision-repair properties of an Escherichia coli mutant deficient in DNA polymerase. Nature 226, 708–710 (1970)

    Google Scholar 

  • Caillet-Fauquet, P., Defais, M.: UV reactivation of phage λ in a polA mutant of E. coli. Mutat. Res. 15, 353–355 (1972)

    Google Scholar 

  • Clark, A.J., Volkert, M.R.: A new classification of pathways repairing pyrimidine dimer damage in DNA. In: DNA repair mechanisms (Hanawalt, P.C., Friedberg, E.C., and Fox, C.F., eds.). New York: Academic Press 1978 (in press)

    Google Scholar 

  • Clark, A.J., Volkert, M.R., Margossian, L.J.: A role for recF in repair of UV damage to DNA. Cold Spring Harbor Symp. Quant. Biol. 43 In press (1978)

  • Cole, R.S.: Repair of DNA containing interstrand crosslinks in Escherichia coli: Sequential excision and recombination. Proc. Natl. Acad. Sci. U.S.A. 70, 1064–1068 (1973)

    Google Scholar 

  • Defais, M., Caillet-Fauquet, P., Fox, M., and Radman, M.: Induction kinetics of mutagenic DNA repair activity in E. coli following ultraviolet irradiation. Mol. gen. Genet. 148, 125–130 (1976)

    Google Scholar 

  • Defais, M., Fauquet, Pl., Radman, M., Errera, M.: Ultraviolet reactivation and ultraviolet mutagenesis of λ in different genetic systems. Virology 43, 495–503 (1971)

    Google Scholar 

  • Demerec, M., Adelberg, E.A., Clark, A.J., Hartman, P.E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966)

    PubMed  Google Scholar 

  • Devoret, R., Blanco, M., George, J., Radman, M.: Recovery of phage λ from ultraviolet damage. In: Molecular mechanisms for repair of DNA (Hanawalt, P.C., and Setlow, R.B., eds.), pp. 155–171. New York: Plenum Press (1975)

    Google Scholar 

  • Eggertsson, G., Adelberg, E.A.: Map positions and specificities of suppressor mutations in Escherichia coli K-12. Genetics 52, 319–340 (1965)

    Google Scholar 

  • George, J., Devoret, F., Radman, M.: Indirect ultraviolet reactivation of phage λ. Proc. Natl. Acad. Sci. U.S.A. 71, 144–147 (1974)

    Google Scholar 

  • Harm, W.: Comment on the relationship between UV reactivation and host-cell reactivation phage. Virology 29, 494 (1966)

    Google Scholar 

  • Horii, Z.-I., Clark, A.J.: Genetic analysis of the RecF pathway to genetic recombination in Escherichia coli K-12: Isolation and characterization of mutants. J. Mol. Biol. 80, 327–344 (1973)

    Google Scholar 

  • Howard-Flanders, P., Boyce, R.P., Theriot, L.: Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53, 1119–1136 (1966)

    PubMed  Google Scholar 

  • Ichikawa-Ryo, H., Kondo, S.: Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J. Mol. Biol. 97, 77–92 (1975)

    Google Scholar 

  • Kanner, L., Hanawalt, P.: Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem. Biophys. Res. Comm. 39, 149–155 (1970)

    Google Scholar 

  • Kato, T., Rothman, R.H., Clark, A.J.: Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV irradiation. Genetics 87, 1–18 (1977)

    Google Scholar 

  • Kato, T., Shinoura, Y.: Isolation and characterization of mutants of Escherichia coli deficient in induction of mutation by ultraviolet light. Molec. gen. Genet. 156, 121–131 (1977)

    Google Scholar 

  • Klein, A., Niebch, U.: Host-cell reactivation in strains of E. coli lacking DNA polymerase activity in vitro. Nature New Biology 229, 82–84 (1971)

    Google Scholar 

  • Knesser, H., Metzger, K., Sauerbier, W.: Evidence of different mechanisms for ultraviolet reactivation and “ordinary host-cell reactivation” of phage. Virology 27, 213–221 (1965)

    Google Scholar 

  • Mattern, I.E., van Winden, M.P., Rorsch, A.: The range of action of genes controlling radiation sensitivity in Escherichia coli. Mut. Res. 2, 111–131 (1965)

    Google Scholar 

  • Miura, A., Tomizawa, J.-I.: Studies on radiation-sensitive mutants of E. coli III. Participation of the rec system in induction of mutation by ultraviolet irradiation. Molec. gen. Genet. 103, 1–10 (1968)

    Google Scholar 

  • Mount, D.W., Kosel, C.K., Walker, A.: Inducible error-free DNA repair in tsl recA mutants of E. coli. Molec. gen. Genet. 146, 37–41 (1976)

    Google Scholar 

  • Ogawa, H., Shimada, K., Tomizawa, J.-I.: Studies on radiationsensitive mutants of E. coli I. Mutants defective in the repair synthesis. Molec. gen. Genet. 101, 227–244 (1968)

    Google Scholar 

  • Radman, M.: Phenomenology of an inducible mutagetic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In: Molecular and environmental aspects of mutagenesis (Prakash, L., Sherman, F., Miller, M., Lawrence, C.W., and Taber, H.W., eds.), pp. 128–142. Springfield Illinois: C.C. Thomas 1974)

    Google Scholar 

  • Radman, M., Devoret, R.: UV reactivation of bacteriophage λ in excision repairdeficient hosts: Independence of red functions and attachement regions. Virology 43, 504–506 (1971)

    Google Scholar 

  • Roberts, J.W., Roberts, C.W.: Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc. Nat. Acad. Sci. USA 72, 147–151 (1975)

    Google Scholar 

  • Rothman, R.H.: Dimer excision and repair replication patch size in a recL152 mutant of Escherichia coli K-12. J. Bacteriol. 136, 444–448 (1978)

    Google Scholar 

  • Rothman, R.H., Clark, A.J.: Defective excision and post-replication repair of UV-damaged DNA in a recL mutant strain of E. coli K-12. Molec. gen. Genet. 155, 267–277 (1977a)

    Google Scholar 

  • Rothman, R.H., Clark, A.J.: The dependence of post-replication repair on uvrB in a recF mutant of Escherichia coli K-12. Molec. gen. Genet. 155, 279–286 (1977b)

    Google Scholar 

  • Rothman, R.H., Kato, T., Clark, A.J.: The beginning of an investigation of the role of recF in the pathways of metabolism of UV-irradiated DNA in Escherichia coli. In: Molecular mechanisms for repair of DNA (Hanawalt, P.C. and Setlow, R.B., eds.), pp. 283–291, New York: Plenum Press 1975

    Google Scholar 

  • Roulland-Dussoix, D.: Dégradation par la cellule hôte du DNA du bacteriophage lambda irradié par le rayonnement ultraviolet. Mut. Res. 4, 241–252 (1966)

    Google Scholar 

  • Sedgewick, S.G.: Inducible error-prone repair in Escherichia coli. Proc. Nat. Acad. Sci. USA 72, 2753–2757 (1975)

    Google Scholar 

  • Setlow, R.B., Carrier, W.L.: The disappearance of thymine dimers from DNA: An error correcting mechanism. Proc. Nat. Acad. Sci. USA 51, 226–231 (1964)

    Google Scholar 

  • Smith, K.C., Meun, D.H.C.: Repair of radiation-induced damage in Escherichia coli I. Effect of rec mutations on post-replication repair of damage due to ultraviolet radiation. J. Mol. Biol. 51, 459–472 (1970)

    Google Scholar 

  • Tomilin, N.V.: Ultraviolet reactivation and ultraviolet mutagenesis of infections lambda DNA: Strong inhibition by treatment of DNA in vitro with UV-endonuclease from Micrococcus luteus. Mut. Res. 27, 147–156 (1975)

    Google Scholar 

  • Weigle, J.J.: Induction of mutations in a bacterial virus. Proc. Nat. Acad. Sci. USA 39, 628–636 (1953)

    Google Scholar 

  • Willets, N.S., Clark, A.J., Low, K.B.: Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J. Bacteriol. 97, 244–249 (1969)

    Google Scholar 

  • Witkin, E.M.: Ultraviolet mutagenesis and inducible repair in Escherichia coli. Bacteriol. Rev. 40, 869–907 (1976)

    Google Scholar 

  • Witkin, E.M., George, D.L.: Ultraviolet mutagenesis in polA and uvrA polA derivatives of Escherichia coli B/r: Evidence for an inducible error-prone repair system. Genetics suppl. 73, 91–108 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Briges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, R.H., Margossian, L.J. & Clark, A.J. W-reactivation of phage lambda in recF, recL, uvrA, and uvrB mutants of E. coli K-12. Molec. Gen. Genet. 169, 279–287 (1979). https://doi.org/10.1007/BF00382274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382274

Keywords

Navigation