Skip to main content
Log in

Bidirectional movements of mitochondria along axons of an isolated nerve segment

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The sciatic nerve of the rat was constricted at two sites about 10 mm apart. Three and seventeen hours later, a part of the nerve including the intermediate segment between the two crushed regions was dissected out and studied electron microscopically. Mitochondria and other organelles accumulated at the ends of interrupted fibres both proximally and distally of either crushed region. In the nerve segment between the two constrictions mitochondria collected at the fibre ends, whereas their number became significantly reduced in axons of the middle part of the segment. It is inferred that this translocation of mitochondria is brought about by a bidirectional shift of particles towards the fibre ends at which they become deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burdwood, W. O.: Rapid bidirectional particle movements in neurons. J. Cell Biol. 27, 115A (1965).

  • Dahlström, A.: The effect of reserpine and tetrabenazine on the accumulation of noradrenaline in the rat sciatic nerve after ligation. Acta physiol. scand. 62, 167–179 (1967).

    Google Scholar 

  • —, and J. Häggendal: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand. 67, 278–288 (1966).

    Google Scholar 

  • Estable, C., Acosta-Ferreira, W., and J. R. Sotelo: An electron microscope study of the regenerating nerve fibres. Z. Zellforsch. 46, 387–399 (1957).

    Google Scholar 

  • Friede, R. L.: Electrophoretic production of reactive axon swellings in vitro and their histochemical properties. Acta neuropath. (Berl.) 3, 217–228 (1964).

    Google Scholar 

  • —: Axon swellings produced in vivo in isolated segments of nerves. Acta neuropath. (Berl.) 3, 229–237 (1964).

    Google Scholar 

  • Holtzman, E., and A. B. Novikoff: Lysosomes in the rat sciatic nerve following crush. J. Cell Biol. 27, 651–669 (1965).

    Google Scholar 

  • Hughes, A.: The growth of embryonic neurites. A study on cultures of chick neural tissues. J. Anat. (Lond.) 87, 150–162 (1953).

    Google Scholar 

  • Kapeller, K., and D. Mayor: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B 167, 282–292 (1967).

    Google Scholar 

  • —: Accumulation of organelles distal to the site of constriction of post-ganglionic sympathetic nerves. J. Physiol. (Lond.) 194, 95–96P (1968).

    Google Scholar 

  • Kerkut, G. A., A. Shapira, and R. J. Walker: The transport of labelled material from CNS ⇌ muscle along a nerve trunk. Comp. Biochem. Physiol. 23, 729–748 (1967).

    Google Scholar 

  • Lasek, R. J.: Bidirectional transport of radioactively labelled axoplasmic components. Nature (Lond.) 216, 1212–1214 (1967).

    Google Scholar 

  • Lubińska, L.: Axoplasmic streaming in regenerating and in normal nerve fibres. In: Progress in brain research, ed. M. Singer and J. P. Schadé, vol. 13, p. 1–71. Amsterdam: Elsevier 1964.

    Google Scholar 

  • —, S. Niemierko, B. Oderfeld-Nowak, and L. Schwarc: Behaviour of acetylcholinesterase in isolated nerve segments. J. Neurochem. 11, 493–513 (1964).

    Google Scholar 

  • —, B. Oderfeld, L. Schwarc, and J. Zelená: Bidirectional movements of axoplasm in peripheral nerve fibers. Acta Biol. exp. (Warszawa) 23, 239–247 (1963).

    Google Scholar 

  • Mayor, D., and K. Kapeller: Fluorescence microscopy and electron microscopy of adrenergic nerves after constriction at two points. J. roy. micr. Soc. 87, 277–294 (1967).

    Google Scholar 

  • Miani, N.: Proximo-distal movement of phospholipid in the axoplasm of the intact and regenerating neurons. In: Progress in brain research, ed. M. Singer and J. P. Schadé, vol. 13, p. 115–126. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Nakai, J.: Dissociated dorsal root ganglia in tissue culture. Amer. J. Anat. 99, 81–129 (1956).

    Google Scholar 

  • Niemierko, S., and L. Lubińska: Two fractions of axonal acetylcholinesterase exhibiting different behaviour in severed nerves. J. Neurochem. 14, 761–769 (1967).

    Google Scholar 

  • Pellegrino de Iraldi, A., and E. de Robertis: The neurotubular system of the axon and the origin of granulated and non-granulated tubules in regenerating nerves. Z. Zellforsch. 87, 330–344 (1968).

    Google Scholar 

  • Pomerat, C. M.: Cinematology, indispensable tool for cytology. Int. Rev. Cytol. 11, 307–339 (1961).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Sabatini, D. D., K. Bensch, and R. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Scharf, J. H., u. R. Blume: Über die Abhängigkeit der axonalen Mitochondrienzahl vom Kaliber der segmentierten Nervenfaser auf Grund einer Regressionsanalyse. J. Hirnforsch. 6, 361–376 (1964).

    Google Scholar 

  • Schlote, W.: Zur Abgrenzung reaktiver von regenerativen Vorgängen im Axoplasma zentraler Nervenfasern. Verh. Dtsch. Ges. Pathol. 50. Tagg. Heidelberg, S. 277–280 (1966a).

  • —: Der Aufbau von Schichtenkörpern im Axoplasma durchtrennter Opticusfasern distal der Läsion. J. Ultrastruct. Res. 16, 548–568 (1966b).

    Google Scholar 

  • —, u. H. Hager: Elektronenmikroskopische Befunde zur Feinstruktur von Axonveränderungen im peritraumatischen Bereich nach experimenteller Strangdurchtrennung am Rückenmark der weißen Ratte. Naturwissenschaften 47, 448–451 (1960).

    Google Scholar 

  • Speidel, C. C.: Studies of living nerves. I. The movements of individual sheath cells and nerve sprouts correlated with the process of myelin sheath formation in amphibian larvae. J. exp. Zool. 61, 279–317 (1932).

    Google Scholar 

  • —: Studies of living nerves. II. Activities of ameboid growth cones, sheath cells, and myelin segments, as revealed by prolonged observation of individual nerve fibres in frog tadpoles. Amer. J. Anat. 52, 1–79 (1933).

    Google Scholar 

  • —: Studies on living nerves. III. Phenomena of nerve irritation, recovery, degeneration and repair. J. comp. Neurol. 61, 1–82 (1935a).

    Google Scholar 

  • —: Studies of living nerves. IV. Growth, regeneration, and myelination of the peripheral nerves in salamanders. Biol. Bull. 68, 142–163 (1935b).

    Google Scholar 

  • Watson, W. E.: Centripetal passage of labelled molecules along mammalian motor axons. J. Physiol. (Lond.) 196, 122–123P (1968).

    Google Scholar 

  • Webster, H. de F.: Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J. Cell Biol. 12, 361–384 (1962).

    Google Scholar 

  • Wechsler, W., u. H. Hager: Elektronenmikroskopische Befunde zur Feinstruktur von Axonveränderungen in regenerierenden Nervenfasern des Nervus ischiadicus der weißen Ratte. Acta neuropath. (Berl.) 1, 489–506 (1962).

    Google Scholar 

  • Weiss, P.: Neuronal dynamics. Neurosci. Res. Prog. Bull. 5, 371–400 (1967).

    Google Scholar 

  • —, and H. B. Hiscoe: Experiments on the mechanism of nerve growth. J. exp. Zool. 107, 315–395 (1948).

    Google Scholar 

  • —, and A. Pillai: Convection and fate of mitochondria in nerve fibers: axonal flow as vehicle. Proc. nat. Acad. Sci. (Wash.) 54, 48–56 (1965).

    Google Scholar 

  • —, A. C. Taylor, and A. Pillai: The nerve fiber as a system in continuous flow: microcine-matographic and electronmicroscopic demonstrations. Science 136, 330 (1962).

    Google Scholar 

  • Wettstein, R., and J. R. Sotelo: Electron microscope study on the regenerative process of peripheral nerves of mice. Z. Zellforsch. 59, 708–730 (1963).

    Google Scholar 

  • Zeleá, J., and E. Gutmann: Bidirectional shifting of mitochondria along axons. [In Czech.] Čs. Fysiol. 17, 39–40 (1968a).

    Google Scholar 

  • - -Accumulation of organelles in central and peripheral stumps of interrupted axons. In: Macromolecules and the function of the neuron, ed. Z. Lodin. Excerpta Medica Monograph Series, p. 140–152, Amsterdam 1968b.

  • —, and Lubińska: Early changes of acetylcholinesterase activity near the lesion in crushed nerves. Physiol. bohemoslov. 11, 261–268 (1962).

    Google Scholar 

  • —, and E. Gutmann: Accumulation of organelles at the ends of interrupted axons. Z. Zellforsch. 91, 200–219 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Skillful technical assistance of Mrs. M. Sobotková and Mr. M. Doubek is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelená, J. Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z. Zellforsch. 92, 186–196 (1968). https://doi.org/10.1007/BF00335646

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335646

Keywords

Navigation