Skip to main content
Log in

Entrance of colloidal ThO2 tracer into the T tubules and longitudinal tubules of the guinea pig heart

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Colloidal ThO2 particles (diameter of ∼ 60 Å) were used as electron-opaque markers to trace the “intracellular” compartments continuous with the bulk interstitial fluid of guinea pig ventricular muscle. Beating and quiescent hearts in a Langendorff preparation were perfused for 30 min with oxygenated Ringer solution containing 1% ThO2. The hearts were immediately fixed by perfusing with glutaraldehyde solution. The colloidal ThO2 particles entered into many of the T tubules and into longitudinallyrunning tubules. No differences in distribution of ThO2 were observed in a heart which was not exposed to ThO2 until after it was fixed. Tracer did not penetrate into the intercalated disk clefts in the guinea pig hearts and one frog heart used for comparison. Tubular profiles filled with ThO2 were not seen in frog heart, an observation which confirms the absence of T tubules in this amphibian. It is concluded that, in mammalian cardiac muscle, the lumens of the longitudinal tubules are continuous with the lumens of the T tubules, forming an extensively interconnected T-L tubular system. Hence, every myofibril has close access to a fluid-filled space which is continuous with the interstitial fluid and which may be of similar cationic composition; such an arrangement should facilitate excitation-contraction coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H., Freygang, W. H.: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163, 61–103 (1962).

    Google Scholar 

  • Andersson-Cedergren, E.: Ultrastructure of motor endplate and sarcoplasmic components of mouse skeletal muscle fibers as revealed by three-dimensional reconstruction from serial sections. J. Ultrastruct. Res., Suppl. 1, 1–191 (1959).

    Google Scholar 

  • Birks, R. I.: In: Muscle, ed. by W. M. Paul, E. E. Daniel, E. M. Kay, and G. Monckton. Oxford: Pergamon Press 1964.

    Google Scholar 

  • —: The sarcoplasmic reticulum of twitch fibres in the frog sartorius muscle. In: Muscle, ed. by W. M. Paul, E. E. Daniel, E. M. Kay, and G. Monckton, p. 199–216. Oxford: Pergamon Press 1964.

    Google Scholar 

  • Denoit, F., Coraboeuf, E.: Etude comparative de l'ultrastructure du myocarde chez le Rat et le Cobaye. C. R. Soc. Biol. (Paris) 159, 2118–2121 (1965).

    Google Scholar 

  • Ebashi, S., Endo, M., Ohtsuki, I.: Control of muscle contraction. Quart. Rev. Biophys. 2, 351–384 (1969).

    Google Scholar 

  • Eisenberg, R. S., Gage, P. W.: Frog skeletal muscle fibers: changes in electrical properties after disruption of transverse tubular system. Science 158, 1700–1701 (1967).

    Google Scholar 

  • Endo, M.: Entry of a dye into the sarcotubular system of muscle. Nature (Lond.) 202, 1115–1116 (1964).

    Google Scholar 

  • Essner, E., Novikoff, A. B., Quintana, N.: Nucleoside phosphatase activities in rat cardiac muscle. J. Cell Biol. 25, 201–215 (1965).

    Google Scholar 

  • Fahrenbach, W. H.: Sarcoplasmic reticulum: ultrastructure of the triadic junction. Science 147, 1308–1310 (1965).

    Google Scholar 

  • Falk, G., Fatt, P.: Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc. roy. Soc. B 160, 69–123 (1964).

    Google Scholar 

  • Fawcett, D. W., McNutt, N. S.: The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J. Cell Biol. 42, 1–45 (1969).

    Google Scholar 

  • Forbes, M. S., Sperelakis, N.: Ultrastructure of lizard ventricular muscle. J. Ultrastruct. Res. 34, 204–214 (1971).

    Google Scholar 

  • Forssmann, W. G., Girardier, L.: Untersuchungen zur Ultrastruktur des Rattenherzmuskels mit besonderer Berücksichtigung des sarcoplasmatischen Retikulum. Z. Zellforsch. 72, 249–275 (1966).

    Google Scholar 

  • —: A study of the T system in rat heart. J. Cell Biol. 42, 1–19 (1970).

    Google Scholar 

  • Freygang, W. H., Jr., Goldstein, D. A., Hellam, D. C., Peachey, L. D.: The relation between the late after-potential and the size of the transverse tubular system of frog muscle. J. gen. Physiol. 48, 235–263 (1964).

    Google Scholar 

  • Grossmann, A., Furchgott, R. F.: The effects of external calcium concentration on the distribution and exchange of calcium in resting and beating guinea-pig auricles. J. Pharmacol. exp. Ther. 143, 107–119 (1963).

    Google Scholar 

  • —: The effects of various drugs on calcium exchange in isolated guinea-pig left auricle. J. Pharmacol. exp. Ther. 145, 162–172 (1964).

    Google Scholar 

  • Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Fed. Proc. 23, 909–912 (1964).

    Google Scholar 

  • Huxley, A. F., Taylor, R. E.: Local activation of striated muscle fibres. J. Physiol. (Lond.) 144, 426–441 (1958).

    Google Scholar 

  • Huxley, H. E.: Evidence of continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature (Lond.) 202, 1067–1071 (1964).

    Google Scholar 

  • Johnson, E. A., Simonds, M. A.: Chemical and histological space determinations in rabbit heart. Amer. J. Physiol. 202, 589–592 (1962).

    Google Scholar 

  • Kelly, D. E.: The fine structure of skeletal muscle triad junctions. J. Ultrastruct. Res. 29, 37–49 (1969).

    Google Scholar 

  • Langer, G. A.: Calcium exchange in dog ventricular muscle: relation to frequency of contraction and maintenance of contractility. Circulat. Res. 17, 78–89 (1965).

    Google Scholar 

  • Legato, M. J., Langer, G. A.: The subcellular localization of calcium ion in mammalian myocardium. J. Cell Biol. 41, 401–423 (1969).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Müller, P.: Lokale Kontraktionsauslösung am Herzmuskel. Helv. physiol. pharmacol. Acta 24, C106-C108 (1966).

    Google Scholar 

  • Nelson, D. A., Benson, E. S.: On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J. Cell Biol. 16, 297–313 (1963).

    Google Scholar 

  • Niedergerke, R., Orkand, R. K.: The dual effect of calcium on the action potential of the frog's heart. J. Physiol. (Lond.) 184, 291–311 (1966).

    Google Scholar 

  • Page, E.: Cat heart muscle in vitro. III. The extracellular space. J. gen. Physiol. 46, 201–213 (1962).

    Google Scholar 

  • —: The occurrence of inclusions within membrane-limited structures that run longitudinally in the cells of mammalian heart muscle. J. Ultrastruct. Res. 17, 63–71 (1967).

    Google Scholar 

  • —, Storm, S. R.: Cat heart muscle in vitro. IX. Cell ion and water contents in anisosmolal solutions. J. gen. Physiol. 49, 641–653 (1966).

    Google Scholar 

  • Pappano, A. J., Sperelakis, N.: Spike electrogenesis in cultured heart cells. Amer. J. Physiol. 217, 615–624 (1969).

    Google Scholar 

  • Reuter, H., Beeler, G. W.: Calcium current and activation of contraction in ventricular myocardial fibers. Science 162, 399–401 (1969).

    Google Scholar 

  • Revel, J. P.: The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 12, 571–588 (1962).

    Google Scholar 

  • —, Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33, C7-C12 (1967).

    Google Scholar 

  • Rostgaard, J., Behnke, O.: Fine structural localization of adenine nucleoside phosphatase activity in the sarcoplasmic reticulum and the T system of rat myocardium. J. Ultrastruct. Res. 12, 579–591 (1965).

    Google Scholar 

  • Schulze, W., Wollenberger, A.: Zytochemische Lokalisation und Differenzierung von Na+K+ und anderer membranständiger ATPase-Aktivität im Herzmuskel. Histochemie 19, 302–318 (1969).

    Google Scholar 

  • Shiina, S.-I., Mizuhira, V., Uchida, K., Amakawa, T.: Electronmicroscopic study on sodium ion distribution in cardiac ventricle cells. Jap. Circulat. J. (Ni.) 33, 601–605 (1969).

    Google Scholar 

  • Simpson, F. O.: The transverse tubular system in mammalian myocardial cells. Amer. J. Anat. 117, 1–18 (1965).

    Google Scholar 

  • —, Rayns, D. G.: The relationship between the transverse tubular system and other tubules at the Z disc levels of myocardial cells in the ferret. Amer. J. Anat. 122, 193–208 (1968).

    Google Scholar 

  • Sperelakis, N., Hoshiko, T.: Electrical impedance of cardiac muscle. Circulat. Res. 9, 1280–1283 (1961).

    Google Scholar 

  • —, Rubio, R., Redick, J.: Sharp discontinuity in sarcomere lengths across intercalated disks of fibrillating cat hearts. J. Ultrastruct. Res. 30, 503–532 (1970).

    Google Scholar 

  • —, Schneider, M. F.: Membrane ion conductances of frog sartorius fibers as a function of tonicity. Amer. J. Physiol. 215, 723–729 (1968).

    Google Scholar 

  • Staley, N. A., Benson, E. S.: The ultrastructure of frog ventricular muscle and its relationship to mechanisms of excitation-contraction coupling. J. Cell Biol. 38, 99–114 (1968).

    Google Scholar 

  • Stein, O., Stein, J.: Lipid synthesis, intracellular transport, and storage. III. Electron microscopic radioautographic study of the rat heart perfused with tritiated oleic acid. J. Cell Biol. 36, 63–77 (1968).

    Google Scholar 

  • Weber, A., Herz, R., Reiss, I.: The regulation of myofibrillar activity by calcium. Proc. roy. Soc. B 160, 489–499 (1964).

    Google Scholar 

  • Wiedmeier, V. T., Johnson, S. A., Siegesmund, K. A., Smith, J. J.: Systematic effects of RES blocking agents in the dog. J. reticuloendoth. Soc. 6, 202–220 (1969).

    Google Scholar 

  • Winegrad, S., Shanes, A. M.: Calcium flux and contractility in guinea pig atria. J. gen. Physiol. 45, 371–394 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the American Heart Association and from the Public Health Service (HE-11155, HE-05815 and HE-10384). The authors wish to acknowledge the expert technical assistance of Mrs. Jan Redick and to thank Dr. James Smith of Marquette University for the supply of Thorotrast used in these studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, R., Sperelakis, N. Entrance of colloidal ThO2 tracer into the T tubules and longitudinal tubules of the guinea pig heart. Z. Zellforsch. 116, 20–36 (1971). https://doi.org/10.1007/BF00332855

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332855

Key-Words

Navigation