Skip to main content
Log in

Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The yeast nuclear SCO1 gene is required for accumulation of the mitochondrially synthesized cytochrome c oxidase subunits I and II (COXI and COXII). We cloned and characterized the SCO1 gene. It codes for a 0.9 kb transcript. DNA sequence analysis predicts a 33 kDa protein. As shown by in vitro transcription and translation experiments in combination with import studies on isolated mitochodria, this protein is matured into a 30 kDa polypeptide which is tightly associated with a mitochondrial membrane. The possible function of the SCO1 gene product in the assembly of cytochrome c oxidase is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    Google Scholar 

  • Bonitz GS, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system: structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255:11927–11941

    Google Scholar 

  • Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. Biochim Biophys Acta 726:135–148

    Google Scholar 

  • Corruzi G and Tzagoloff A (1979) Assembly of the mitochondrial membrane system: DNA sequence of subunit 2 of yeast cytochrome oxidase. J Biol Chem 254:9324–9330

    Google Scholar 

  • Costanzo MC, Fox TD (1986) Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of specific mitochondrial mRNA. Mol Cell Biol 6:3694–3703

    Google Scholar 

  • Costanzo MC, Fox TD (1988) Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc Natl Acad Sci USA 85:2677–2681

    Google Scholar 

  • Costanzo MC, Seaver EC, Fox TD (1986) At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J 5:3637–3641

    Google Scholar 

  • Daum G, Böhni PC, Schatz G (1982) Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033

    Google Scholar 

  • Dieckmann CL, Tzagoloff A (1985) Assembly of the mitochondrial membrane system: CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem 260:1513–1520

    Google Scholar 

  • Douglas MG, McCammon MT, Vassarotti A (1986) Targeting proteins into mitochondria. Microbiol Rev 50:166–178

    Google Scholar 

  • Dowhan W, Bibus RC, Schatz G (1985) The cytoplasmically-made subunit IV is necessary for assembly of cytochrome c oxidase in yeast. EMBO J 4:179–184

    Google Scholar 

  • Fox TD (1979) Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochome c oxidase subunit II. Proc Natl Acad Sci USA 76:6534–6538

    Google Scholar 

  • Fujiki Y, Hubbard AL, Fowlern S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93:97–102

    Google Scholar 

  • Groot GSP, Poyton RO (1975) Oxygen control of cytochrome c oxidase synthesis in isolated mitochondria from Saccharomyces cerevisiae. Nature 255:238–240

    Google Scholar 

  • Hartl F-U, Schmidt B, Wachter E, Weiss H, Neupert W (1986) Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell 47:939–951

    Google Scholar 

  • Hartl F-U, Ostermann J, Guiard B, Neupert W (1987) Successive translocation into and out of the mitochondrial matrix: targeting of proteins to the intermembrane space by a bipartite signal peptide. Cell 51:1027–1037

    Google Scholar 

  • Hurt EC, van Loon APGM (1986) How proteins find mitochondria and intramitochondrial compartments. Trends Biochem Sci 11:204–207

    Google Scholar 

  • Hurt EC, Pesold-Hurt B, Suda K, Oppliger W, Schatz G (1985) The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J 4:2061–2068

    Google Scholar 

  • Kloeckener-Gruissem B, McEwen JE, Poyton RO (1987) Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae: multiple trans-acting nuclear genes exert specific effects on expression of each of the cytochrome c oxidase subunits encoded on mitochondrial DNA. Curr Genet 12:311–322

    Google Scholar 

  • Koerner TJ, Hill J, Tzagoloff A (1985) Cloning and characterization of the yeast nuclear gene for subunit 5 of cytochrome oxidase. J Biol Chem 260:9513–9515

    Google Scholar 

  • Kramer W, Drutsa V, Jansen HW, Kramer B, Pflugfelder M, Fritz HJ (1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res 12:9441–9456

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Maarse AC, Van Loon APGM, Riezman H, Gregor I, Schatz G, Grivell LA (1984) Subunit IV of yeast cytochrome c oxidase: cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein. EMBO J 3:2831–2837

    Google Scholar 

  • Mahler HR, Bastos RN, Feldman F, Flury U, Lin CC, Perlman PS, Phan SH (1975) Biogenetic autonomy of mitochondrial and its limits. In: Tzagoloff A (ed) Membrane biogenesis. Plenum Press, New York, pp 15–61

    Google Scholar 

  • McEwen JE, Ko C, Kloeckner-Gruissem B, Poyton RO (1986) Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae. J Biol Chem 261:11872–11879

    Google Scholar 

  • Patterson TE, Poyton RO (1986) COX8, the structural gene for yeast cytochrome c oxidase subunit VIII. J Biol Chem 261:17192–17197

    Google Scholar 

  • Poutre CG, Fox TD (1987) PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding oxidase subunit II. Genetics 115:637–647

    Google Scholar 

  • Power SD, Lochrie MA, Sevario KA, Patterson TE, Poyton RO (1984) The nuclear-coded subunits of yeast cytochrome c oxidase: I. Fractionation of the holoenzyme into chemically pure polypeptides and the identification of two new subunits using solvent extraction and reversed phase high performance liquid chromatography. J Biol Chem 259:6564–6570

    Google Scholar 

  • Rao JKM, Argos P (1986) A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta 869:197–214

    Google Scholar 

  • Rechsteiner M, Rogers S, Rote K (1987) Protein structure and intracellular stability. Trends Biochem Sci 12:390–394

    Google Scholar 

  • Riezmann H, Hay R, Witte C, Nelson N, Schatz G (1983) Yeast mitochondrial outer membrane specifically binds cytoplasmically synthesized precursors of mitochondrial proteins. EMBO J 2:1113–1118

    Google Scholar 

  • Rödel G (1986) Two nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5′ untranslated COB leader. Curr Genet 11:41–45

    Google Scholar 

  • Rödel G, Fox TD (1987) The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the COB 5′ untranslated leader. Mol Gen Genet 206:45–50

    Google Scholar 

  • Rödel G, Körte A, Kaudewitz F (1985) Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript. Curr Genet 9:641–648

    Google Scholar 

  • Saltzgaber-Müller J, Schatz G (1978) Heme is necessary for accumulation and assembly of cytochrome c oxidase subunits in Saccharomyces cerevisiae. J Biol Chem 253:305–310

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schatz G (1987) Signals guiding proteins to their correct locations in mitochondria. Eur J Biochem 165:1–6

    Google Scholar 

  • Schatz G, Mason TL (1974) The biosynthesis of mitochondrial proteins. Annu Rev Biochem 43:51–87

    Google Scholar 

  • Schulze M, Rödel G (1988) SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. Mol Gen Genet 211:492–498

    Google Scholar 

  • Séraphin B, Simon M, Faye G (1985) Primary structure of a gene for subunit V of the cytochrome c oxidase from Saccharomyces cerevisiae. Curr Genet 9:435–439

    Google Scholar 

  • Sherman F, Fink GR, Lawrence CW (1986) In: Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Thalenfeld BE, Tzagoloff A (1980) Assembly of the mitochondrial membrane system: sequence of the oxi2 gene of yeast mitochondrial DNA. J Biol Chem 255:6173–6180

    Google Scholar 

  • Van Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342

    Google Scholar 

  • Weiss-Brummer B, Guba R, Haid A, Schweyen RJ (1979) Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase. Curr Genet 1:75–83

    Google Scholar 

  • Woodrow G, Schatz G (1979) The role of oxygen in the biosynthesis of cytochrome c oxidase of yeast mitochondria. J Biol Chem 254:6088–6093

    Google Scholar 

  • Wright RM, Ko C, Cumsky MG, Poyton RO (1984) Isolation and sequence of the structural gene for cytochrome c oxidase subunit VI from Saccharomyces cerevisiae. J Biol Chem 259:15401–15407

    Google Scholar 

  • Wright RM, Dircks LK, Poyton RO (1986) Characterization of COX9, the nuclear gene encoding the yeast mitochondrial protein cytochrome c oxidase subunit VIIa. J Biol Chem 261:17183–17191

    Google Scholar 

  • Zwizinski C, Schleyer M, Neupert W (1984) Proteinaceous receptors for the import of mitochondrial precursor proteins. J Biol Chem 259:7850–7856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, M., Rödel, G. Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene. Mol Gen Genet 216, 37–43 (1989). https://doi.org/10.1007/BF00332228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332228

Key words

Navigation