Skip to main content
Log in

A novel wheat α-amylase gene (α-Amy3)

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A genomic clone of a wheat α-amylase gene (λAmy3/33) was identified, on the basis of hybridisation properties, as different from α-Amy1 and α-Amy2 genes which had been characterised previously. The nucleotide sequence revealed that this gene has the normal sequence motifs of an active gene and an open reading frame interrupted by two introns. The protein sequence encoded by this open reading frame is recognisably similar to that of α-amylase from the α-Amy1 and α-Amy2 genes and there is high sequence homology in all three proteins at the putative active sites and Ca++ binding region. In addition, the introns are at positions equivalent to the position of introns in the α-Amy1 and α-Amy2 genes. However, the sequence was less similar to α-Amy1 and α-Amy2 than these are to each other. Southern blot analysis showed that the λAmy3/33 DNA is one of a small multigene family carried on a different chromosome (group 5) from either the α-Amy1 or α-Amy2 genes. A further difference from the α-Amy1 and α-Amy2 genes was the pattern of expression. λAmy3/33 was expressed only in immature grains and, unlike the α-Amy1 and α-Amy2 genes, not at all in germinating aleurones. These data suggested therefore that this gene represents a third type of α-amylase gene, not described before, which shares a common evolutionary ancestor with the α-Amy1 and α-Amy2 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akazawa T, Miyata S (1982) Biosynthesis and secretion of α-amylase and other hydrolases in germinating cereal seeds. In: Campbell PN, Marshall, RD (eds) Essays in biochemistry, vol 18. Academic Press, London, New York, pp 41–78

    Google Scholar 

  • Baulcombe DC, Buffard D (1983) Gibberellic-acid-regulated expression of α-amylase and six other genes in wheat aleurone layers. Planta 157:493–501

    Google Scholar 

  • Baulcombe DC, Martienssen RA, Huttly AK, Barker RF, Lazarus CM (1986) Hormonal and developmental control of gene expression in wheat. Philos Trans R Soc Lond [Biol] (in press)

  • Brown JWS, Feix G, Frendewey D (1986) Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J 5:2749–2758

    Google Scholar 

  • Chandler PM, Zwar JA, Jacobsen JV, Higgins TJV, Inglis AS (1984) The effects of gibberellic acid and abscisic acid on α-amylase mRNA levels in barley aleurone layers studies using an α-amylase cDNA clone. Plant Mol Biol 3:407–418

    Google Scholar 

  • Daussant J, Miyata S, Mitsui T, Akazawa T (1983) Enzymic mechanism of starch breakdown in germinating rice seed. Plant Physiol 71:88–95

    Google Scholar 

  • Daussant J, Renard HA (1986) Development of different α-amylase isozymes, having high and low isoelectric points, during early stages of kernel development in wheat. J Cereal Sci 4 (in press)

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Federoff N (1983) Notes on cloning maize DNA. Maize Genetics Co-operation Newsletter, vol 57, Addendum, p 154

    Google Scholar 

  • Frischauf A-M, Lehrach H, Poustka A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842

    Google Scholar 

  • Gale MD, Ainsworth CC (1984) The relationship between α-amylase species found in developing and germinating wheat grain. Biochem Gen 22:1031–1036

    Google Scholar 

  • Gilbert W, Marchionni M, McKnight G (1986) On the antiquity of introns. Cell 46:151–154

    Google Scholar 

  • Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

    Google Scholar 

  • Lazarus CM, Baulcombe DC, Martienssen RA (1985) α-amylase genes of wheat are two multigene families which are differentially expressed. Plant Mol Biol 5:13–24

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Maxam AM, Gilbert W (1977) Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • Messing J, Geraghty D, Heidecker G, Hu N-T, Kridl J, Rubenstein I (1983) Plant gene structure. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants. Plenum Publishing Corp, pp 211–227

  • Olered R, Jonsson G (1970) Electrophoretic studies of α-amylase in wheat. II. J Sci Fd Agric 21:385–392

    Google Scholar 

  • Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13:7207–7220

    Google Scholar 

  • Rogers J (1985) Exon shuffling and intron insertion of serine protease genes. Nature 315:458–459

    Google Scholar 

  • Rogers JC (1984) Two barley α-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260:3731–3738

    Google Scholar 

  • Rogers JC (1985) Conserved amino acid sequence domains in alpha-amylases from plants, mammals, and bacteria. Biochem Biophys Res Commun 128:470–476

    Google Scholar 

  • Rogers JC, Milliman C (1983) Isolation and sequence analysis of a barley α-amylase cDNA clone. J Biol Chem 258:8169–8174

    Google Scholar 

  • Staden R (1982) An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res 10:2951–2961

    Google Scholar 

  • von Heijne G (1984) Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3:2315–2318

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baulcombe, D.C., Huttly, A.K., Martienssen, R.A. et al. A novel wheat α-amylase gene (α-Amy3). Mol Gen Genet 209, 33–40 (1987). https://doi.org/10.1007/BF00329833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329833

Key words

Navigation