Skip to main content
Log in

Tn1525, a kanamycin R determinant flanked by two direct copies of IS15

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3′) (5″) type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant.

Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann BJ, Brooks Low K, Taylor AL (1976) Recalibrated linkage map of Escherichia coli K12. Bacteriol Rev 40:116–167

    Google Scholar 

  • Bartes SF, Martin WI, O'Connor PE, Marsden L, Vogel H (1969) New Salmonella serotype: Salmonella enteriditis serotype ordonez. Appl Microbiol 18:282–283

    Google Scholar 

  • Berg DE, Davies J, Allet B, Rochaix JD (1975) Transposition of R factor genes to bacteriophage λ. Proc Natl Acad Sci USA 72:3628–3632

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II A multipurpose cloning system. Gene 2:95–113

    Google Scholar 

  • Bouanchaud DH, Chabbert YA (1969) Stable coexistence of three resistance factors (fi-) in Salmonella panama and Escherichia coli K12. J Gen Microbiol 58:107–113

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in E. coli. J Mol Biol 41:459–472

    Google Scholar 

  • Calos MP, Miller JH (1980) Transposable elements. Cell 20:579–595

    Google Scholar 

  • Casewell MW, Datton MT, Webster M, Phillips I (1977) Gentamicin-resistant Klebsiella aerogenes in a urological ward Lancet 2:444–446

    Google Scholar 

  • Chabbert YA, Roussel A, Witchitz JL, Sanson-Le Pors MJ, Courvalin P (1979) Restriction endonuclease generated patterns of plasmids belonging to incompatibility groups Il, C, M, and N; application to plasmid taxonomy and epidemiology. In: Timmis and Pühler (eds) Plasmids of medical environmental and commercial importance. Elsevier/North-Holland Biochemical Press, Amsterdam, p 183

    Google Scholar 

  • Chabbert YA, Scavizzi MR, Witchitz JL, Gerbaud GR, Bouanchaud DH (1972) Incompatibility groups and the classification of Fi- resistance factors. J Bacteriol 112:666–675

    Google Scholar 

  • Clerget M, Chandler M, Caro L (1980) Isolation of an IS1 flanked kanamycin resistance from R1drd19. Mol Gen Genet 180:123–127

    Google Scholar 

  • Courvalin P, Fiandt M, Davies J (1978) DNA relationships between genes coding for aminoglycoside-modifying enzymes from antibiotic-producing bacteria and R plasmids In: Microbiology. American Society for Microbiology, p 262

  • Datta N, Hedges RW, Becker D, Becker D, Davies J (1974) Plasmid-determined fusidic acid resistance in the enterobacteriaceae. J Gen Microbiol 83:191–196

    Google Scholar 

  • Datta N, Hughes VM, Nugent ME, Richard H (1979) Plasmids and transposons and their stability and mutability in bacteria isolated during an outbreak of hospital infection. Plasmid 2:182–196

    Google Scholar 

  • Davies J, Berg D, Jorgensen R, Fiandt M, Huang TSR, Courvalin P, Schoff J (1977) Transposable neomycin phosphotransferases. In: Drews, Högenauer (eds) R factors: their properties and possible control. Springer-Verlag, Wien, New York, p 101

    Google Scholar 

  • Davies J, Smith DI (1978) Plasmid-mediated resistance to antimicrobial agents. Ann Rev Microbiol 32:469–518

    Google Scholar 

  • Davies RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, New York, p 140

    Google Scholar 

  • Denhardt DT (1966) A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646

    Google Scholar 

  • Falkow S, Guerry P, Edges RW, Datta N (1974) Polynucleotide sequence relationships among plasmids of the I compatibility complex. J Gen Microbiol 85:65–76

    Google Scholar 

  • Grindley NDF, Joyce CM (1980) Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903. Proc Natl Acad Sci USA 77:7176–7180

    Google Scholar 

  • Hershfield V, Boyer H, Chow L, Helinski DR (1976) Characterization of a mini-ColE1 plasmid. J Bacteriol 126:447–453

    Google Scholar 

  • Hu M, Deonier RC (1981) Mapping of IS1 element flanking the argF gene region of the E. coli chromosome. Mol Gen Genet 181:222–229

    Google Scholar 

  • Iida S, Hänni C, Echarti C, Arber W (1981) Is the IS-flanked r-determinant of the R-plasmid NR1 a transposon? J Gen Microbiol 126:413–425

    Google Scholar 

  • Kleckner N (1981) Transposable elements in prokaryotes. Ann Rev Genet 15:341–404

    Google Scholar 

  • Labigne-Roussel A, Gerbaud G, Courvalin P (1981) Translocation of sequences encoding antibiotic resistance from the chromosome to a receptor plasmid in Salmonella ordonez. Mol Gen Genet 182:390–408

    Google Scholar 

  • Labigne-Roussel A, Courvalin P (1983) IS15, a new insertion sequence widely spread in R plasmids of Gram-negative bacteria. Mol Gen Genet 189:102–112

    Google Scholar 

  • Labigne-Roussel A, Witchitz JL, Courvalin P (1982) Modular evolution of disseminated Inc 7-M plasmids encoding gentamicin resistance. Plasmid 8, 215–231

    Google Scholar 

  • Lederberg EM (1981) Plasmid reference center registry of transposon (Tn) allocations through july 1981 Gene 16:59–61

    Google Scholar 

  • Lee HI, Ohtsubo E, Deonier RC, Davidson N (1974) Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. J Mol Biol 89:585–597

    Google Scholar 

  • Lesage DD, Gerbaud GR, Chabbert YA (1975) Carte génétique et structure chez E. coli K12 d'un plasmide de résistance isolé chez Salmonella ordonez. Ann Microbiol (Paris) 126A:435–448

    Google Scholar 

  • Maniatis T, Jeffrey A, Kleid DG (1975) Nucleotide sequence of the rightward operator of phage λ. Proc Natl Acad Sci USA 72:1184–1188

    Google Scholar 

  • Miller JH (1972) Preparation of λh 80 dlac phage. In: Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York, p 319

    Google Scholar 

  • Nomura N, Yamagishi H, Oka A (1978) Isolation and characterization of transducing coliphage fd carrying a kanamycin resistance gene. Gene 3:39–51

    Google Scholar 

  • Novick RP, Clowes RC, Cohen SN, Curtiss III R, Datta N, Falkow S (1976) Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 40:168–189

    Google Scholar 

  • Oka A, Sugisaki H, Takanami M (1980) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226

    Google Scholar 

  • Roberts RJ (1982) Restriction and modification enzymes and their recognition sequences. Nucleic Acid Res 10:117–144

    Google Scholar 

  • Rosner JL, Gottesman MM (1977) Transposition and deletion of Tn9: a transposable element carrying the gene for chloramphenicol resistance. In: Bukhari, Shapiro, Adhya (eds) DNA insertion elements plasmids and episomes. Cold Spring Harbor Laboratory, New York, p 213

    Google Scholar 

  • Roussel A, Carlier C, Gerbaud G, Chabbert YA, Croissant O, Blangy D (1979) Reversible translocation of antibiotic resistance determinants in Salmonella ordonez. Mol Gen Genet 169:13–25

    Google Scholar 

  • Sasaki I, Bertani G (1965) Growth abnormalities in Hfr derivatives of Escherichia coli strain. Can J Genet Microbiol 40:365–376

    Google Scholar 

  • Shinnick TM, Lund E, Smithies O, Blattner FR (1975) Hybridization of labeled RNA to DNA in agarose gels. Nucleic Acid Res 2:1911–1929

    Google Scholar 

  • Smith HO, Birnstiel ML (1976) A simple method for DNA restriction site mapping. Nucleic Acid Res 3:2387–2398

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Sutcliffe JG (1978) pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acid Res 5:2721–2828

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Arber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labigne-Roussel, A., Briaux-Gerbaud, S. & Courvalin, P. Tn1525, a kanamycin R determinant flanked by two direct copies of IS15. Molec Gen Genet 189, 90–101 (1983). https://doi.org/10.1007/BF00326060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326060

Keywords

Navigation