Skip to main content
Log in

Ultrastructural aspects of myofibrils formation in cultured skeletal muscle

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

  1. 1.

    Tissue cultures of chick embryo muscles are prepared for electron microscopy after identification with the light microscope of the cells concerned. A new device for flat face embedding is briefly described.

  2. 2.

    Mononucleated myoblasts have a reduced amount of rough surfaced endoplasmic reticulum and a large number of ribosome clusters (polyribosomes). They contain some microtubules.

  3. 3.

    Differentiation of myofilaments proper begins only in plurinucleated sarcoblasts (myotubes). The number of ribosomes decreases while scattered filaments accumulate. These are of three types:

  1. a)

    microtubules, mainly abundant at first, perhaps related to the numerous cell centers, have a general orientation along the main axis of the fiber. They decrease in number as appear

  2. b)

    “thick” filaments, at first wavy, scattered and not always up to their full size (90–120 Å diameter);

  3. c)

    “thin” filaments (∼ 50 Å) which are difficult to visualize in our conditions when thed are scattered.

  1. 4.

    “Thick” (100–125 Å) and “thin” (∼ 50 Å) filaments associate in bundles of myofilaments where they regularly alternate. The first bundles are homogenous along their length and show no sign of sarcomeric differentiation.

  2. 5.

    Z substance appears in or near the membrane of the extending T system. This Z substance develops into more compact Z bodies that align themselves more or less on neighbouring small bundles of myofilaments. In their immediate neighbourhood, the thick filaments disappear so that a very narrow and later widening I band occurs. At the same time bigger and denser granules than ribosomes, probably glycogen, appear between the bundles. Z bodies decrease later to form a Z line, neighbouring bundles joining up. The structure of the adult muscle myofibrils is finally reached.

  3. 6.

    These results are compared to others in the litterature and an attempt is made to give a synthetic picture of the myofibrils formation in Vertebrate skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. R., and F. A. Pepe: Ultrastructure of developping muscle cells in the chick embryo. Amer. J. Anat. 116, 115–148 (1965).

    Google Scholar 

  • Auber, J.: Mode d'accroissement des myofibrilles au cours de la nymphose de Calliphora erythrocephala. C. R. Acad. Sci. (Paris) 254, 4074–4075 (1962).

    Google Scholar 

  • —: Les premiers stades de la myofibrillogénèse dans les muscles de vol de Calliphora erythrocephala. C. R. Acad. Sci. (Paris) 258, 708–710 (1964).

    Google Scholar 

  • Bergman, R. A.: Observations on the morphogenesis of rat skeletal muscle. Bull. Johns Hopk. Hosp. 110, 187–201 (1962).

    Google Scholar 

  • Betz, E. H., H. Firket, and M. Reznik: Some aspects of muscle regeneration. Int. Rev. Cytol. 19, 203–228 (1966).

    Google Scholar 

  • Capers, C. R.: Multinucleation of skeletal muscle in vitro. J. biophys. biochem. Cytol. 7, 559–566 (1960).

    Google Scholar 

  • Chevremont, M.: Muscle squelettique cultivé in vitro. Transformation d'éléments musculaires en macrophages. Arch. Biol. (Liège) 51, 313–333 (1940).

    Google Scholar 

  • Dessouki, D. A., and R. G. Hibbs: An electron microscope study of the development of the somatic muscle of the chick embryo. Amer. J. Anat. 116, 523–566 (1965).

    Google Scholar 

  • De The, G.: Cytoplasmic microtubules in different animal cells. J. Cell Biol. 23, 265–275 (1964).

    Google Scholar 

  • Ferris, W.: Electron microscope observations of the histogenesis of striated muscle. Anat. Rec. 133, 275 (1959).

    Google Scholar 

  • Firket, H.: Recherches sur la synthèse des acides désoxyribonucléïques et la préparation à la mitose (Etude cytophotométrique et autoradiographique). Arch. Biol. (Liège) 68, 1–168 (1958).

    Google Scholar 

  • —: Etude de l'ultrastructure de bourgeons musculaires en régénération pendant la myogénèse. J. Microscopie 2, 639–642 (1963).

    Google Scholar 

  • —: Polyester sheeting (Melinex O), a tissue culture support easily separable from epoxy resins after flat face embedding. Stain Technol. 41, 189–192 (1966).

    Google Scholar 

  • Franzini-Armstrong, C., and K. R. Porter: Sarcolemnal invaginations constituting the T system in fish muscle fibers. J. Cell Biol. 22, 675–696 (1964).

    Google Scholar 

  • Hanson, J., and J. Löwy: The structure of F actin and of actin filaments isolated from muscle. J. molec. Biol. 6, 46–60 (1963).

    Google Scholar 

  • Hay, E. D.: The fine structure of differentiating muscle in the salamander tail. Z. Zellforsch. 59, 6–34 (1963).

    Google Scholar 

  • Heuson-Stiennon, J. A.: Intervention des polysomes dans la synthèse des myofilaments du muscle embryonnaire du rat. J. Microscopie 3, 229–232 (1964).

    Google Scholar 

  • —: Morphogénèse de la cellule musculaire striée étudiée au microscope électronique. I.-Formation des structures fibrillaires. J. Microscopie 4, 657–678 (1965).

    Google Scholar 

  • Huxley, H. E.: Electron microscope study on the structure of natural and synthetic protein filaments from striated muscle. J. molec. Biol. 7, 281–308 (1963).

    Google Scholar 

  • Konigsberg, I. R., N. McElvain, M. Tootle, and H. Herman: The dissociability of DNA synthesis from the development of multinuclearity of muscle cells in culture. J. biophys. biochem. Cytol. 8, 333–344 (1960).

    Google Scholar 

  • Lash, J. W., H. Holtzer, and H. Swift: Regeneration of mature skeletal muscle. Anat. Rec. 128, 679–698 (1957).

    Google Scholar 

  • Ledbetter, M. C., and K. R. Porter: A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250 (1963).

    Google Scholar 

  • Lewis, W. H., and M. R. Lewis: Behaviour of cross striated muscle in tissue cultures. Amer. J. Anat. 22, 169–194 (1917).

    Google Scholar 

  • Price, H. M., E. L. Howes, and J. M. Blumberg: Ultrastructural alterations in skeletal muscle fibers injured by cold. II.-Cells of the sarcolemnal tube: observations on “discontinuous” regeneration and myofibril formation. Lab. Invest. 13, 1279–1302 (1964).

    Google Scholar 

  • Pryzbylsky, R. J., and J. M. Blumberg: Ultrastructural aspects of myogenesis in the chick. Lab. Invest. 15, 836–863 (1966).

    Google Scholar 

  • Robbins, E., and N. K. Gonatas: The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–463 (1964).

    Google Scholar 

  • Slautterback, D. B.: Cytoplasmic microtubules. I. Hydra. J. Cell Biol. 18, 367–388 (1963).

    Google Scholar 

  • Waddington, C. H., and M. M. Perry: Helical arrangement of ribosomes in differentiating muscle cells. Exp. Cell Res. 30, 599–600 (1963).

    Google Scholar 

  • Walker, S. M., and R. Schroot: Continuity of the T system with the sarcolemma in rat skeletal muscle fibers. J. Cell Biol. 27, 671–677 (1965).

    Google Scholar 

  • Weissenfels, N.: Der Einfluß der Gewebezüchtung auf die Morphologie des Hühnerherz myoblasten. IV. Über Differenzierungs und Abhängvorgänge an der Muskelelemente. Protoplasma (Wien) 55, 99–113 (1962).

    Google Scholar 

  • Zobel, C. R., and F. D. Carlson: An electron microscopic investigation of myosin and some of its aggregates. J. molec. Biol. 7, 78–89 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firket, H. Ultrastructural aspects of myofibrils formation in cultured skeletal muscle. Z. Zellforsch. 78, 313–327 (1967). https://doi.org/10.1007/BF00325316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325316

Keywords

Navigation