Skip to main content
Log in

Properties of two nuclear pet mutants affecting expression of the mitochondrial oli1 gene of Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

This study details the characteristics of two temperature-conditional pet mutants of yeast, strains ts1860 and ts379, which at the non-permissive temperature show deficiencies in the formation of three mitochondrially encoded subunits of the ATP synthase complex. By analysis of mitochondrial translation products, and of mitochondrial transcription in temperature shift experiments from the permissive (22°C) to the non-permissive (36°C) temperature, it was concluded that the nuclear mutations in both mutants primarily inhibit synthesis of ATP synthase subunit 9, and that reductions in subunit 8 and 6 synthesis are secondary pleiotropic effects. Following transfer to 36°C, cells of mutant ts379 display a near complete inhibition of subunit 9 synthesis within 1 h, coincident with a marked reduction in the level of the cognate oli1 mRNA. On the other hand, near complete inhibition of subunit 9 synthesis in strain ts1860 occurs after 3 h at 36°C, at which time there is little change in the level of subunit 9 mRNA. In both mutants the mRNA levels for subunits 6 and 8 are not significantly affected at the time of inhibition of subunit 9 synthesis. Provision of an alternative source of subunit 8, translated extra-mitochondrially for import into the organelle, does not overcome the mutant phenotype of either mutant at 36°C, confirming that subunit 8 is not the sole or primary deficiency in each mutant. The mutants indicate that the products of a least two nuclear genes (designated AEP1 and AEP2) are required for the expression of the mitochondrial oli1 gene and the synthesis of subunit 9. The product of the AEP1 gene (defective in mutant ts1860) is required for translation of oli1 mRNA while the AEP2 product (defective in mutant ts379) is essential either for the stability of oli1 mRNA or for the correct processing of precursor transcripts to the mature message.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman SH, Tzagoloff A (1990) J Biol Chem 265:9952–9959

    Google Scholar 

  • Bingham CG, Nagley P (1983) Biochim Biophys Acta 740:88–98

    Google Scholar 

  • Boy-Marcotte E, Jacquet M (1982) Gene 20:433–440

    Google Scholar 

  • Burkl G, Demmer W, Holzner H, Schweizer E (1976) In: Bandlow W, Schweyen RJ, Thomas DY, Wolf K, Kaudewitz F (eds) Genetics, biogenesis and bioenergetics of mitochondria. W de Gruyter, Berlin, pp 39–48

    Google Scholar 

  • Cobon GS, Beilharz MW, Linnane AW, Nagley P (1982) Curr Genet 5:97–107

    Google Scholar 

  • Costanzo MC, Fox TD (1988) Proc Natl Acad Sci USA 85:2677–2681

    Google Scholar 

  • Decoster E, Simon M, Hatat D, Faye G (1990) Mol Gen Genet 224:111–118

    Google Scholar 

  • Dieckmann CL, Tzagoloff A (1985) J Biol Chem 260:1513–1520

    Google Scholar 

  • Dieckmann CL, Mittelmeier TM (1987) Curr Genet 12:391–397

    Google Scholar 

  • Dieckmann CL, Bonitz SG, Hill J, Homison G, McGraw P, Pape L, Thalenfeld BE, Tzagoloff A (1982) In: Slonimski PP, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 213–223

    Google Scholar 

  • Dieckmann CL, Koerner TJ, Tzagoloff (1984) J Biol Chem 259:4722–4731

    Google Scholar 

  • Ebner E, Mennucci L, Schatz G (1973a) J Biol Chem 248:5360–5368

    Google Scholar 

  • Ebner E, Mason TL, Schatz G (1973b) J Biol Chem 248:5369–5378

    Google Scholar 

  • Fox TD (1986) Trends Genet Sci 2:97–100

    Google Scholar 

  • Grivell LA (1989) Eur J Biochem 182:477–493

    Google Scholar 

  • Hadikusumo RG, Meltzer S, Choo WM, Jean-Francois MJB, Linnane AW, Marzuki S (1988) Biochim Biophys Acta 933:212–222

    Google Scholar 

  • Jean-Francois MJB, Hadikusumo RG, Watkins LC, Lukins HB, Linuane AW, Marzuki S (1986a) Biochim Biophys Acta 852:133–143

    Google Scholar 

  • Jean-Francois MJB, Lukins HB, Marzuki S (1986b) Biochim Biophys Acta 868:178–182

    Google Scholar 

  • Kloeckener-Gruissem B, McEwen JE, Poyton RO (1987) Curr Genet 12:311–322

    Google Scholar 

  • Lang B, Gurger G, Doxiadis I, Thomas DY, Bandlow W, Kaudewitz F (1977) Anal Biochem 77:110–121

    Google Scholar 

  • McEwen JE, Ko C, Kloeckener-Gruissem B, Poyton RO (1986) J Biol Chem 261:11872–11879

    Google Scholar 

  • Macino G, Tzagoloff A (1980) Cell 20:507–517

    Google Scholar 

  • Macreadie IG, Novitski CE, Maxwell RJ, John U, Ooi BG, McMullen GL, Lukins HB, Linnane AW, Nagley P (1983) Nucleic Acids Res 11:4435–4451

    Google Scholar 

  • Michaelis G, Mannhaupt G, Pratje E, Fischer E, Naggert J, Schweizer E (1982) In: Slonimski PP, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 311–321

    Google Scholar 

  • Muller PP, Reif MK, Zonghou S, Sengstag C, Mason TL, Fox TD (1984) J Molec Biol 175:431–452

    Google Scholar 

  • Murphy M, Choo KB, Macreadie I, Marzuki S, Lukins HB, Nagley P, Linnane AW (1980) Arch Biochem Biophys 203:260–270

    Google Scholar 

  • Nagley P, Farrell LB, Gearing DP, Nero D, Meltzer S, Devenish RJ (1988) Proc Natl Acad Sci USA 85:2091–2095

    Google Scholar 

  • Nagley P (1988) Trends Genet Sci 4:46–52

    Google Scholar 

  • Ooi BG, Nagley P (1986) Curr Genet 10:713–723

    Google Scholar 

  • Ooi BG, Lukins HB, Linnane AW, Nagley P (1987) Nucleic Acids Res 15:1965–1977

    Google Scholar 

  • Pillar T, Lang BF, Steinberger I, Vogt B, Kaudewitz F (1983) J Biol Chem 258:7954–7959

    Google Scholar 

  • Poutre CG, Fox TD (1987) Genetics 115:637–647

    Google Scholar 

  • Pratje E, Guiard B (1986) EMBO J 5:1313–1317

    Google Scholar 

  • Rodel G (1986) Curr Genet 11:41–45

    Google Scholar 

  • Rodel G, Fox TD (1987) Mol Gen Genet 206:45–50

    Google Scholar 

  • Rodel G, Michaelis U, Forsbach V, Kreike J, Kaudewitz F (1986) Curr Genet 11:47–53

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schulze M, Rodel G (1988) Mol Gen Genet 211:492–498

    Google Scholar 

  • Schweizer E, Demmer W, Holzner U, Tahedl HW (1977) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977. Genetics and biogenesis of mitochondria. Walter de Gruyter, Berlin, pp 91–105

    Google Scholar 

  • Sherman F, Fink GR, Hicks JP (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Simon M, Faye G (1984) Mol Gen Genet 196:266–274

    Google Scholar 

  • Smooker PM (1987) PhD thesis, Monash University

  • Studier FW (1973) J Molec Biol 79:237–248

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microb Rev 54:211–225

    Google Scholar 

  • Tzagoloff A, Myers AM (1986) Annu Rev Biochem 55:249–285

    Google Scholar 

  • Zassenhaus HP, Martin NC, Butow RA (1984) J Biol Chem 259:6019–6027

    Google Scholar 

  • Zennaro E, Grimaldi L, Baldacci G, Frontali L (1985) Eur J Biochem 147:191–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Schweyen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, M.J., Schweizer, E. & Lukins, H.B. Properties of two nuclear pet mutants affecting expression of the mitochondrial oli1 gene of Saccharomyces cerevisiae . Curr Genet 19, 343–351 (1991). https://doi.org/10.1007/BF00309594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309594

Key words

Navigation