Skip to main content
Log in

A microtubule model for ingestion and transport in the suctorian tentacle

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The suctorian feeding organelles, the tentacles, display a peculiar tube-like microtubule array through which the food is ingested. The basic pattern of this inner tentacle tube consists of an outer cylinder of single microtubules and an inner cylinder of microtubule ribbons. The present observations on number, distribution and arrangement of microtubules in the tentacle arms of Dendrocometes paradoxus strongly suggest that the distal area of the tentacle plays the most important role in the mechanism of food intake and the transport of the ingested material down the tentacle. Near the tip of the tentacle—which in most species bears a knob-like broadening—the highest number of microtubules is observed. Here the single microtubules of the outer cylinder are attached to a fibrillar material, forming a manchette-like structure which keeps the inner microtubule ribbons in position. It is only at this level that each microtubule of these ribbons bears a single projection, which probably represents the morphological link to the ingested material. Based on the observations in Dendrocometes and all data available concerning the fine structure of other Suctoria, a general model of the function of the tentacle is developed, interpreting food intake as a “grasp- and swallow” rather than a suction mechanism. It is suggested that a sliding back and forth of the microtubule ribbons coupled with a cyclic bridging- and release mechanism between the microtubule projections and the membrane (that comes down with the food) is the most likely explanation for the peculiar feeding mechanism. The mechanical properties of the proposed model as well as other microtubule transport systems, e.g. saltatory movement of organelles in the heliozoan axopod, axoplasmic transport, and chromosome movement are discussed to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J., Fauré-Fremiet, E.: Lésions cytoplasmiques provoquées chez un cilié par un tentaculifère parasite. Protistologica 3, 121–124 (1967).

    Google Scholar 

  • Bardele, C. F.: Ultrastruktur von Dendrocometes paradoxus (Suctoria). In: Progress in Protozoology. Third Intern. Congr. Protozoology, p. 56–57. Leningrad: Nauka, Leningrad Branch 1969.

    Google Scholar 

  • — Budding and metamorphosis in Acineta tuberosa. An electron microscopic study on morphogenesis in Suctoria. J. Protozool. 1, 51–70 (1970).

    Google Scholar 

  • — Microtubule model systems: Cytoplasmic transport in the suctorian tentacle and the centrohelidian axopod. In: 29th Annual EMSA Meeting (ed. C. J. Arceneaux), p. 334–335. Baton Rouge: Claitor's Publishing Division 1971.

    Google Scholar 

  • — Grell, K. G.: Elektronenmikroskopische Beobachtungen zur Nahrungsaufnahme bei dem Suktor Acineta tuberosa Ehrenberg. Z. Zellforsch. 80, 108–123 (1967).

    Google Scholar 

  • Batisse, A.: Les appendices préhenseurs d'Ephelota gemmipara Hertwig. C. R. Acad. Sci. (Paris) 261, 5629–5632 (1965).

    Google Scholar 

  • — L'ultrastructure des tentacules suceurs d'Ephelota gemmipara Hertwig. C. R. Acad. Sci. (Paris) 262, 771–774 (1966).

    Google Scholar 

  • — Données nouvelles sur la structure et le fonctionnement des ventouses tentaculaires des acinétiens. C. R. Acad. Sci. (Paris) 265, 1056–1058 (1967).

    Google Scholar 

  • Canella, M. F.: Studi e ricerche sui tentaculiferi nel quadro della biologia generale. Ann. Univ. Ferrara, Sez. 3, 1, 259–716 (1957).

    Google Scholar 

  • Collin, B.: Etudes monographiques sur les acinétiens II. Morphologie, physiologie, systématique. Arch. Zool. exp. gén. 51, 1–457 (1912).

    Google Scholar 

  • Eismond, J.: Zur Frage des Saugmechanismus der Suctorien. Zool. Anz. 13, 721–723 (1890).

    Google Scholar 

  • Hauser, M.: Elektronenmikroskopische Untersuchung an dem Suktor Paracineta limbata Maupas. Z. Zellforsch. 106, 584–614 (1970).

    Google Scholar 

  • Hepler, P. R., McIntosh, J. R., Cleland, S.: Intermicrotubule bridges in mitotic spindle apparatus. J. Cell Biol. 45, 438–444 (1969).

    Google Scholar 

  • Hertwig, R.: Über Podophrya gemmipara nebst Bemerkungen zum Bau und zur systematischen Stellung der Acineten. Morph. Jb. 1, 20–82 (1876).

    Google Scholar 

  • Hollande, A., Cachon, J., Cachon, M., Valentin, J.: Infrastructure des axopodes et organisation générale de Sticholonche zanclea Hertwig (Radiolaire Sticholonchidea). Protistologica 3, 155–164 (1967).

    Google Scholar 

  • Hull, R. W.: Studies on suctorian protozoa: The mechanism of ingestion of prey cytoplasm. J. Protozool. 8, 351–359 (1961).

    Google Scholar 

  • Jurand, A., Bomford, R.: The fine structure of the parasitic suctorian Podophrya parameciorum. J. Microscopie 4, 509–522 (1965).

    Google Scholar 

  • Kahl, A.: Über die verwandtschaftlichen Beziehungen der Suctorien zu den prostomen Infusorien. Arch. Protistenk. 73, 423–481 (1931).

    Google Scholar 

  • Kitching, J. A.: The physiology of contractile vacuoles VII. Osmotic relations in a suctorian, with special reference to the mechanism of control of vacuolar output. J. exp. Biol. 28, 203–214 (1951).

    Google Scholar 

  • — The physiology of contractile vacuoles VIII. The water relations of the suctorian Podophrya during feeding. J. exp. Biol. 29, 363–371 (1952).

    Google Scholar 

  • — On suction in Suctoria. Proc. Seventh Symp. Colston Research Soc. 7, p. 197–203. London: Butterworths Scientific Publications 1954.

    Google Scholar 

  • — The axopods of the sun animalcule, Actinophrys sol (Heliozoa). In: Primitive motile systems (eds. Allen, R. D., Kamiya, N.), p. 445–456. New York: Academic Press 1964.

    Google Scholar 

  • Kormos, J.: (Bau und Funktion der Saugröhrchen der Suctorien). [In Hungarian, with German summary.] Allattani Közlemenyek 35, 130–153 (1938).

    Google Scholar 

  • McIntosh, J. R., Hepler, R. K., Wie, D. G. van: Model for mitosis. Nature (Lond.) 224, 659–663 (1969).

    Google Scholar 

  • — Porter, K. R.: Microtubules in the spermatids of the domestic fowl. J. Cell Biol. 35, 153–173 (1967).

    Google Scholar 

  • Noble, A. E.: On Tokophrya lemnarum Stein (Suctoria) with an account of its budding and conjugation. Univ. Calif. Publ. Zool. 37, 477–520 (1932).

    Google Scholar 

  • Paulin, J. J., Corliss, J. O.: Ultrastructural and other observations which suggest suctorian affinities for the taxonomically enigmatic ciliate Cyathodinium. J. Protozool. 16, 216–223 (1969).

    Google Scholar 

  • Penard, E.: Etudes sur les infusoires tentaculifères. Mem. Soc. Phys. Hist. Nat. (Genève) 39, 133–229 (1920).

    Google Scholar 

  • Pestel, B.: Beiträge zur Morphologie und Biologie des Dendrocometes paradoxus Stein. Arch. Protistenk. 75, 403–471 (1931).

    Google Scholar 

  • Pitelka, D. R.: Fibrillar systems in protozoa. In: Research in protozoology (ed. Chen, T. T.), vol. 3, p. 279–388 Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • Plate, L.: Untersuchungen einiger an den Kiemenblättern des Gammarus pulex lebender Ektoparasiten. Z. wiss. Zool. 43, 175–241 (1886).

    Google Scholar 

  • Porter, K. R.: Cytoplasmic microtubules and their function. In: Principles of biomolecular organization (eds. G. E. W. Wolstenholme, M. O'Connor). p. 308–334. London: Churchill 1966.

    Google Scholar 

  • Roth, L. E., Pihlaja, D. J., Shigenaka, Y.: Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J. Ultrastruct. Res. 30, 7–37 (1970).

    Google Scholar 

  • Rudzinska, M. A.: The fine structure and function of the tentacle in Tokophrya infusionum. J. Cell Biol. 25, 459–477 (1965).

    Google Scholar 

  • — The mechanism of food intake in Tokophrya infusionum and ultrastructural changes in food vacuoles during digestion. J. Protozool. 17, 626–641 (1970).

    Google Scholar 

  • Smith, D. S.: On the significance of cross-bridges between microtubules and synaptic vesicles. Phil. Trans B 261, 395–405 (1971).

    Google Scholar 

  • Stein, Fr.: Neue Beiträge zur Kenntnis der Entwicklungsgeschichte und des feineren Baues der Infusionsthiere. Z. wiss. Zool. 3, 475–509 (1852).

    Google Scholar 

  • Tilney, L. G.: The assembly of microtubules and their role in the development of cell form. Develop. Biol., Suppl. 2, 63–102 (1968).

  • -- How microtubule patterns are generated: The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys (in press).

  • — Porter, K. R.: Studies in microtubules in Heliozoa I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma (Wien) 60, 317–344 (1965).

    Google Scholar 

  • Wilson, H. J.: Arms and bridges on microtubules in the mitotic apparatus. J. Cell Biol. 40, 854–859 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of the manuscript was prepared while the author enjoyed the hospitality of the Division of Biology, Kansas State University, Manhattan. In particular, the author wishes to express his gratitude to Dr. L. E. Roth and Dr. Jane Westfall for helpful discussion. He also acknowledges the skillful technical assistance of Mrs. Brigitte Gauss. This investigation was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardele, C.F. A microtubule model for ingestion and transport in the suctorian tentacle. Z.Zellforsch 126, 116–134 (1972). https://doi.org/10.1007/BF00306784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306784

Key words

Navigation