Skip to main content
Log in

Chromosome homology and evolution of emydid turtles

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

G-, C-, Q-banding and standard karyotypic analyses were used to study the chromosomal relationships of emydid turtles. Ten species of emydids were used (5 batagurines and 5 emydines) which samples all of the karyotypic variation known for the Emydidae. Data from a testudinid and a chelydrid are compared to the emydids. The karyotype of Mauremys and Sacalia is considered representative of the primitive karyotype for this group because of its widespread occurrence in the morphologically primitive Batagurinae and its similarity to that of some testudinids. The emydine karyotype is believed to have evolved from the primitive batagurine karyotype by the deletion of a heterochromatic macrochromosome. Siebenrockiella and Rhinoclemys are karyotypically derived batagurines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bickham, J.W.: A cytosystematic study of turtles in the genera Clemmys, Mauremys and Sacalia. Herpetologica 31, 198–204 (1975)

    Google Scholar 

  • Bickham, J. W.: A meiotic analysis of 4 species of turtles. Genetica (den Haag) (in press, 1976)

  • Bickham, J. W., Baker, R. J.: A karyological study of some neotropical turtles. Copeia (Wash.) (in press, 1976)

  • Bradshaw, W.N., Hsu, T.C.: Chromosomes of Peromyscus (Rodentia, Cricetidae) III. Polymorphism in Peromyscus maniculatus. Cytogenetics 11, 436–451 (1972)

    Google Scholar 

  • Caspersson, T., Zech, L., Modest, E.J., Foley, G.E., Wagh, U., Simonsson, E.: Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp. Cell Res. 58, 128–140 (1969)

    Google Scholar 

  • Fredga, K., Mandahl, N.: Autosomal heterochromatin in some carnivores. Nobel Symp. 23, 104–117 (1973)

    Google Scholar 

  • Grouchey, J. de, Turleau, C., Roubin, M., Colin, F.C.: Chromosomal evolution of man and the primates (Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Nobel Symp. 23, 124–131 (1973)

    Google Scholar 

  • Hay, O.P.: The fossil turtles of North America. Carnegie Inst. Wash. Publ. 75, 1–568 (1908)

    Google Scholar 

  • Levan, A., Fredga, K., Sandberg, A.A.: Nomenclature for centromeric position in chromosomes. Hereditas (Lond.) 52, 201–220 (1964)

    Google Scholar 

  • Mascarello, J.T., Stock, A.D., Pathak, S.: Conservatism in the arrangement of genetic material in rodents. J. Mammal. 55, 695–704 (1974)

    Google Scholar 

  • McDowell, S.B.: Partition of the genus Clemmys and related problems in the taxonomy of the aquatic Testudinidae. Proc. Zool. Soc. London 143, 239–279 (1964)

    Google Scholar 

  • Moorhead, P.S., Nowell, P.G., Mellman, W.J., Batipps, D.M., Hungerford, D.A.: Chromosome preparations of leukocytes cultured from human peripheral blood. Exp. Cell Res. 20, 613–616 (1960)

    Google Scholar 

  • Pathak, S., Hsu, T.C., Arrighi, F.E.: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet. Cell Genet. 12, 315–326 (1973a)

    Google Scholar 

  • Pathak, S., Hsu, T.C., Shirley, L.: Chromosome homology in the climbing rats, genus Tylomys (Rodentia: Cricetidae). Chromosoma (Berl.) 42, 215–228 (1973b)

    Google Scholar 

  • Patton, J.L.: Chromosome studies of certain pocket mice, genus Perognathus. J. Mammal. 48, 27–37 (1967)

    Google Scholar 

  • Pearson, P.: The uniqueness of the human karyotype. Nobel Symp. 23, 145–151 (1973)

    Google Scholar 

  • Sampaio, M.M., Barros, R.M., Ayres, M., Cunha, O.R.: A karyological study of two species of tortoises from the Amazon region of Brazil. Cytologia (Tokyo) 36, 199–204 (1971)

    Google Scholar 

  • Seabright, M.: A rapid banding technique for human chromosomes. Lancet 1971 II, 971–972

    Google Scholar 

  • Stock, A.D.: Karyological relationships in turtles (Reptilia: Chelonia). Canad. J. Genet. Cytol. 14, 859–868 (1972)

    Google Scholar 

  • Stock, A.D., Arrighi, F.E., Stefos, K.: Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken, ring-necked dove, and domestic pigeon. Cytogenet. Cell Genet. 13, 410–418 (1974)

    Google Scholar 

  • Stock, A.D., Mengden, G.A.: Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma (Berl.) 50, 69–77 (1975)

    Google Scholar 

  • Takagi, N., Sasaki, M.: A phylogenetic study of bird karyotypes. Chromosoma (Berl.) 46, 91–120 (1974)

    Google Scholar 

  • Turleau, E., Grouchey, J. de, Klein, M.: Phylogénie chromosomique de l'homme et des primates hominiens (Pan troglodytes, Gorilla gorilla et Pongo pygmaeus), essai de reconstitution du caryotype de l'ancêtre commun. Ann. Génét. 15, 225–240 (1972)

    Google Scholar 

  • Yosida, T.H., Sagai, T.: Similarity of Giemsa banding patterns of chromosomes in several species of the genus Rattus. Chromosoma (Berl.) 41, 93–101 (1973)

    Google Scholar 

  • Zech, L.: Florescence banding techniques. Nobel Symp. 23, 28–31 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickham, J.W., Baker, R.J. Chromosome homology and evolution of emydid turtles. Chromosoma 54, 201–219 (1976). https://doi.org/10.1007/BF00293451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293451

Keywords

Navigation