Skip to main content
Log in

The induction of orientational instability and bivalent interlocking at meiosis

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The administration of 40° C heat-treatments was found to induce bivalent orientational instability and interlocking at male meiosis in the locust Locusta migratoria. Only the longest members of the complement showed orientational instability and these usually possessed single distally sited chiasmata, with near-maximal intercentromeric distances. An effect on the stability of spindle fibre microtubule association, or attachment to the chromosome, is considered to be a possible explanation of the behaviour found. Bipolar orientation was generally achieved prior to anaphase I so that chromosome segregation was usually normal. Diamphitelic bivalents provided the most common exception to this rule. They sometimes lagged at anaphase, with the separation of half-bivalents and the production of structures indistinguishable from lagging univalents. The bivalent interlocking also involved the longest members of the complement. Most combinations of rod/rod, rod/ring and ring/ring types of interlocking were found. Usually only two bivalents were interlocked in any one cell, although occasionally three were found interlocked. All types appeared to involve an effect on the regulation of chromosome pairing, although at least one of the cells found showed interlocking caused by the metaphase orientational instability. In most cells, interlocked bivalents showed stable orientation and this usually involved the unipolar orientation of each bivalent's two centromeres. Such configurations provide concrete support for the importance of physical tension in the maintenance of metaphase orientational stability. They lead to double non-disjunction at anaphase I. Interlocked bivalents showed normal congression to a mid-equatorial position with no tendency for the re-adjustment of arm ratios to equalise centromere distances from the poles. This behaviour is discussed in relation to spindle fibre dynamics and it is concluded that no hypothesis of congression currently available can satisfactorily explain all that we know of the behaviour of univalents, bivalents, multivalents and interlocked bivalents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajer, A.: In: Chromosomes today, 3. (Proc. 3rd. Oxford Chromosome Conference 1970.) (In preparation.)

  • Bauer, H., Dietz, R., Röbbelen, C.: Die Spermatocytenteilungen der Tipuliden. III. Das Bewegungsverhalten der Chromosomen in Translokationsheterozygoten von Tipula oleracea. Chromosoma (Berl.) 12, 116–189 (1961).

    Google Scholar 

  • Bernal, J. D.: Structural units in cellular physiology. Publ. Amer. Assoc. Adv. Sci. 14, 199–205 (1940).

    Google Scholar 

  • Böök, A.: Equilibrium of trivalents at metaphase. Hereditas (Lund) 31, 499 (1945).

    Google Scholar 

  • Buss, M. E.: Ph. D. Thesis, University of Cambridge (1971).

  • -Henderson, S. A.: Induced bivalent interlocking and the course of meiotic chromosome synapsis. Nature (Lond.) (in press 1971).

  • Callan, H. G.: The sex determining mechanism of the earwig Forficula auricularia. J. Genet. 41, 349–374 (1941).

    Google Scholar 

  • Darlington, C. D.: Recent advances in cytology, 2nd. ed. London: Churchill, 1937.

    Google Scholar 

  • Dietz, R.: Multiple Geschlechtschromosomen bei den cypriden Ostracoden, ihre Evolution und ihr Teilungsverhalten. Chromosoma (Berl.) 9, 359–440 (1958).

    Google Scholar 

  • —: Bau und Funktion des Spindelapparates. Naturwissenschaften 56, 237–248 (1969).

    Google Scholar 

  • Henderson, S. A.: Temperature and chiasma formation in Schistocerca gregaria. II. Cytological effects at 40° C and the mechanism of heat-induced univalence. Chromosoma (Berl.) 13, 437–463 (1962).

    Google Scholar 

  • —: Sex chromosomal polymorphism in the earwig Forficula. Chromosoma (Berl.) 31, 139–164 (1970).

    Google Scholar 

  • — Koch, C. A.: Co-orientational stability by physical tension: a demonstration with experimentally interlocked bivalents. Chromosoma (Berl.) 29, 207–216 (1970).

    Google Scholar 

  • — Nicklas, R. B., Koch, C. A.: Temperature-induced orientation instability during meiosis: an experimental analysis. J. Cell Sci. 6, 323–350 (1970).

    Google Scholar 

  • Hughes-Schrader, S.: Polarization, kinetochore movements and bivalent structure in the meiosis of male mantids. Biol. Bull. (Woods Hole) 85, 265–300 (1943).

    Google Scholar 

  • —: The ‘premetaphase stretch’ and kinetochore orientation in phasmids. Chromo soma (Berl.) 3, 1–21 (1947).

    Google Scholar 

  • —: Expulsion of the sex chromosome from the spindle in spermatocytes of a mantid. Chromosoma (Berl.) 3, 257–270 (1948).

    Google Scholar 

  • —: The chromosomes of mantids (Orthoptera: Manteidae) in relation to taxonomy. Chromosoma (Berl.) 4, 1–55 (1950).

    Google Scholar 

  • Inoué, S.: Organisation and function of the mitotic spindle. In: Primitive motile systems in cell biology (R. D. Allen and N. Kamiya, eds.), p. 549–594. New York: Academic Press 1964.

    Google Scholar 

  • —, Sato, H.: Cell motility by labile association of molecules. J. gen. Physiol. 50 (Suppl.), 259–288 (1967).

    Google Scholar 

  • Lewis, K. R., John, B.: The organisation and evolution of the sex multiple in Blaps mucronata. Chromosoma (Berl.) 9, 69–80 (1957).

    Google Scholar 

  • Lima-de-Faria, A.: The role of the kinetochore in chromosome organisation. Hereditas (Lund) 42, 85–160 (1956).

    Google Scholar 

  • McIntosh, J. R., Hepler, P. K., Wie, D. G. van: Model for mitosis. Nature (Lond.) 224, 659–663 (1969).

    Google Scholar 

  • Morgan, W. P.: A comparative study of the spermatogenesis of five species of earwigs. J. Morph. 46, 241–271 (1928).

    Google Scholar 

  • Nicklas, R. B.: Chromosome micromanipulation. II. Induced reorientation and the experimental control of segregation in meiosis. Chromosoma (Berl.) 21, 17–50 (1967).

    Google Scholar 

  • —: Mitosis. In: Advances in cell biology, vol. II, (D M. Prescott, L. Goldstein and E. H. McConkey, eds.). New York: Appleton-Century-Crofts 1971.

    Google Scholar 

  • —, Koch, C. A.: Chromosome micromanipulation. III. Spindle fibre tension and the reorientation of mal-orientated chromosomes. J. Cell Biol. 43, 40–50 (1969).

    Google Scholar 

  • —, Staehly, C. A.: Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma (Berl.) 21, 1–16 (1967).

    Google Scholar 

  • Östergren, G.: Equilibrium of trivalents and the mechanism of chromosome movements. Hereditas (Lund) 31, 498 (1945).

    Google Scholar 

  • —: Considerations on some elementary features of mitosis. Hereditas (Lund) 36, 1–18 (1950).

    Google Scholar 

  • —: The mechanism of co-orientation in bivalents and multivalents. The theory of orientation by pulling. Hereditas (Lund) 37, 85–156 (1951).

    Google Scholar 

  • Rashevsky, N.: Some remarks on the movement of chromosomes during cell division. Bull. math. Biophys. 3, 1–3 (1941).

    Google Scholar 

  • White, M. J. D.: Sex chromosomes and meiotic mechanisms in some African and Australian mantids. Chromosoma (Berl.) 16, 521–547 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buss, M.E., Henderson, S.A. The induction of orientational instability and bivalent interlocking at meiosis. Chromosoma 35, 153–183 (1971). https://doi.org/10.1007/BF00285735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285735

Keywords

Navigation