Skip to main content
Log in

Structural sensitivity of grazing formulations in nutrient controlled plankton models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

Stability and persistence properties of a family of non-spatial plankton models, each differentiated by its herbivore grazing term, are analytically compared. The dynamic persistence function in the model is shown to operate uniformly even though stability configuration characteristics of the model may be topologically distinct. The persistence threshold for each model indicates that total nutrient is a fundamental biological control. In the parameter space, all of the models studied are structurally unstable; however, an important bifurcation mechanism associated with this instability governs persistence. While, topologically, model transfigurement through parameter modulation is non-continuous, the biological populations evolve in a continuous or a lower semicontinuous manner. A basic conclusion of the paper is that fundamental problems for these marine ecological models remain unresolved since each of the models is a structurally unstable system for a fixed dynamically persistent ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, F., Gatzke, H., Haddad, A., Wax, N.: The dynamics of two interacting populations. J. Math. Anal. Appl. 46, 658–670 (1974)

    Google Scholar 

  • Coddington, E., Levinson, N.: Theory of ordinary differential equations (Ch.15, 16), 429 pp. New York: McGraw-Hill 1955

    Google Scholar 

  • DiToro, D. M., O'Connor, D. J., Thomann, R. V.: A dynamic model of the phytoplankton population in the Sacramento-San Joaquin delta. Advances in Chemistry. 106, 131–180 (1971)

    Google Scholar 

  • Frost, B. W.: Feeding processes at lower trophic levels in the pelagic communities. In: ‘The biology of the oceanic Pacific’ (Charles B. Miller, Ed.). pp. 59–77 Corvallis: Oregon State University Press 1974

    Google Scholar 

  • Hallam, T. G.: On persistence of aquatic ecosystems. In: Oceanic sound scattering prediction (N. Andersen and B. J. Zahuranec, Eds.) pp. 749–766. New York: Plenum 1977

    Google Scholar 

  • Iverson, R. L., Curl, H. C. Jr., Saugen, J. L.: Simulation model for wind-driven summer phytoplankton dynamics in Auke Bay, Alaska. Marine Biology 28, 169–177 (1974)

    Google Scholar 

  • Lefschetz, S.: Differential equations: Geometric theory, 2nd Ed., 390 pp. New York: Interscience (1963)

    Google Scholar 

  • Lotka, A. J.: Elements of mathematical biology, 465 pp. New York: Dover (1925)

    Google Scholar 

  • May, R. M.: Stability and complexity in model ecosystems, 265 pp. Princeton: University Press 1974

    Google Scholar 

  • Mullin, M. M., Stewart, E. F., Fuglister, F. J.: Ingestion by planktonic grazers as a function of concentration of food. Limnol. Oceanogr. 20 (2), 259–262 (1975)

    Google Scholar 

  • O'Brien, J. J., Wroblewski, J. S.: A simulation of the mesoscale distribution of the lower marine trophic levels off West Florida. Invest. Pesq. 37 (2), 193–244 (1973)

    Google Scholar 

  • Parsons, T. R., LeBrasseur, R. J., Fulton, J. D.: Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. J. Oceanogr. Soc. Japan 23, 10–17 (1967)

    Google Scholar 

  • Sansone, G., Conti, R.: Non-linear Differential Equations, 535 pp. Oxford: Pergamon (1964)

    Google Scholar 

  • Steele, J. H.: The Structure of Marine Ecosystems, 128 pp. Cambridge: Harvard University Press 1974

    Google Scholar 

  • Volterra, V.: Variazione e fluttuazione del numero d'individual in specie animali conviventi. Mem. Accad. Nazionale Lincei (Ser. 6) 2, 31–113 (1926)

    Google Scholar 

  • Walsh, J.: A spatial simulation model of the Peru upwelling ecosystem. Deep Sea Research, 22, 201–236 (1975)

    Google Scholar 

  • Winter, D. F., Banse, K., Anderson, G. C.: The dynamics of phytoplankton blooms in Puget Sound, a fjord in the Northwestern United States. Marine Biology 29, 139–176 (1975)

    Google Scholar 

  • Wroblewski, J. S.: The vertically migrating deep scattering layer—Its possible role in the creation of small scale phytoplankton patchiness in the ocean. In: Oceanic sound scattering prediction (N. Andersen and B. J. Zahuranec, Eds.). New York: Plenum 1977

    Google Scholar 

  • Wroblewski, J. S., O'Brien, J. J.: A spatial model of phytoplankton patchiness. Marine Biology 35, 161–175 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallam, T.G. Structural sensitivity of grazing formulations in nutrient controlled plankton models. J. Math. Biology 5, 269–280 (1978). https://doi.org/10.1007/BF00276122

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276122

Keywords

Navigation