Skip to main content
Log in

Parasites at the origin of life

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is concerned with parasitic virus-like particles and their hosts. It is proposed that parasitism must have occurred at an early stage of evolution, soon after the first self-reproducing systems had formed. When chemical building blocks for self-reproducing systems became scarce, current theories envision that some self-reproducing systems evolved the capability to synthesize materials for self-replication from chemical precursors in the environment. It is proposed that at about the same time parasitic systems (phages) arose that replicated at the expense of host systems by diverting host materials to the replication of their own genomes.

With the aid of a mathematical model we demonstrate that host and phages can coexist in a stable equilibrium, depending upon the carrying capacity of the environment. If the latter falls below a threshold, then the parasites die out.

A parasite that has the capability to integrate into the host genome is replicated along with it and thus escapes extinction during periods of population bottlenecks of the host population.

The presence of phages creates evolutionary pressures favoring host defenses against them. Thus, modern bacteria are able to degrade most invading DNA (through restriction enzymes). Defense capabilities require a share of the genome, thus adding to the genetic complexity of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M., May, R. M.: Infectious diseases and population cycles of forest insects. Science 210, 658–661 (1980)

    Google Scholar 

  • Arber, W., Dussoix, D.: Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage λ. II. Control over acceptance of DNA from infecting phage λ. J. Mol. Biol. 5, 18–49 (1962)

    Google Scholar 

  • Arber, W.: Promotion and limitation of genetic exchange. Science 205, 361–372 (1979)

    Google Scholar 

  • Barrell, B. G.: Sequence analysis of bacteriophage φX174 DNA. Int. Rev. Biochem. 17, 125–179 (1978)

    Google Scholar 

  • Bennett, Ch. H.: Dissipation-error tradeoff in proofreading. Biosystems 11, 85–91 (1979)

    Google Scholar 

  • Biebricher, C. K., Eigen, M., Luce, R.: Kinetic analysis of template-instructed and de novo RNA synthesis by 67-01 replicase. J. Mol. Biol. 148, 391–410 (1981).

    Google Scholar 

  • Boyce, W. E., DiPrima, R. C.: Elementary differential equations and boundary value problems. 3rd edit. New York: John Wiley 1977

    Google Scholar 

  • Bremermann, H. J.: Quantitative aspects of goal-seeking, self-organizing systems. In: Progress in theoretical biology. Snell, F. M. (ed.) New York: Academic Press 1967

    Google Scholar 

  • Bremermann, H. J.: Complexity of automata, brains, and behavior. In: Physics and mathematics of the nervous system. Conrad, M., Güttinger, W., Dal Cin, M. (eds.) Lecture notes in biomathematics, vol. 4. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  • Bremermann, H. J.: Complexity and transcomputability. In: The encyclopedia of ignorance. Duncan, R., Weston-Smith, M. (eds.) Oxford: Pergamon Press 1977

    Google Scholar 

  • Bremermann, H. J.: Theory of spontaneous cell fusion. Sexuality in cell populations as an evolutionarily stable strategy. Applications to immunology and cancer. J. Theoret. Biology 76, 311–334 (1979a)

    Google Scholar 

  • Bremermann, H. J.: Unlinked strands as a topological constraint on chromosomal DNA, plasmid integration, and DNA repair. J. Math. Biol. 8, 393–401 (1979b)

    Google Scholar 

  • Bremermann, H. J.: Sex and polymorphism as strategies in host-pathogen interactions. J. Theoret. Biology 87, 641–702 (1980a)

    Google Scholar 

  • Bremermann, H. J.: Disease and epidemics from the pathogen's perspective. Report, Center for Pure and Applied Mathematics, University of California, Berkeley, California 1980b

    Google Scholar 

  • Bremermann, H. J.: Minimum energy requirements of information and computing. Intern. J. Theoret. Phys. 21, 203–217 (1982)

    Google Scholar 

  • Bremermann, H. J., Pickering, J.: A game-theoretical model of parasite virulence. J. Theoret. Biology. In press (1982)

  • Bresch, C., Niesert, U., Harnasch, D.: Hypercycles, parasites and packages. J. Theoret. Biology 85, 399–405 (1980)

    Google Scholar 

  • Burks, A. W.: Essays on cellular automata. Urbana. Univ. of Illinois Press 1970

    Google Scholar 

  • Campbell, A.: Conditions for the existence of bacteriophage. Evolution 15, 153–165 (1961)

    Google Scholar 

  • Cleaver, J. E.: DNA damage, repair systems, and human hypersensitive disease. J. Environm. Pathol. Toxicol. 3, 53–68 (1980)

    Google Scholar 

  • Codd, E. F.: Cellular automata. New York: Academic Press 1968

    Google Scholar 

  • Dawkins, R.: The selfish gene. Oxford: University Press 1976

    Google Scholar 

  • Dickerson, R. E.: Chemical evolution and the origin of life. Sci. Amer. 239, no. 4, 70–86 (1978)

    Google Scholar 

  • Diener, T. O.: Viroids and viroid diseases. New York: Wiley-Interscience 1979

    Google Scholar 

  • Dyson, F. J.: A model for the origin of life. J. Mol. Evol. 18, 344–350 (1982)

    Google Scholar 

  • Eigen, M.: Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–526 (1971)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization, Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization, Part B: The abstract hypercycle. Naturwissenschaften 65, 7–41 (1978a)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization, Part C: The realistic hypercycle. Naturwissenschaften 65, 341–369 (1978b)

    Google Scholar 

  • Eigen, M., Gardiner, W., Schuster, P., Winkler-Oswatitsch, R.: The origin of genetic information. Scientific American 244, 88–119 (1981)

    Google Scholar 

  • Goldsmith, D., Owen, W.: The search for life in the universe. Menlo Park: Benjamin 1980

    Google Scholar 

  • Hethcote, H. W., Tudor, D. W.: Integral equation models for endemic infectious diseases. J. Math. Biol. 9, 37–47 (1980)

    Google Scholar 

  • Hofbauer, J., Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization, Part II. Homogeneous growth functions of degree P = 2. SIAM J. Appl. Math. 38, 281–304 (1980)

    Google Scholar 

  • Hofbauer, J., Schuster, P., Sigmund, K.: Competition and cooperation in catalytic self-replication. J. Math. Biol. 11, 155–168 (1981)

    Google Scholar 

  • Kerr, R. A.: Origin of life: New ingredients suggested. Science 210, 42–43 (1980)

    Google Scholar 

  • Kornberg, A.: DNA replication. San Francisco: Freeman 1980

    Google Scholar 

  • Kuhn, H.: Self-organization of molecular systems and evolution of the genetic apparatus. Angew. Chem. Internat. Edit. 11, 798–820 (1972)

    Google Scholar 

  • Kuhn, H.: Model consideration of the origin of life. Environmental structure as stimulus for the evolution of chemical systems. Naturwissenschaften 63, 68–70 (1976)

    Google Scholar 

  • Kuhn, H., Waser, J.: Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981)

    Google Scholar 

  • Küppers, B. O.: Towards an experimental analysis of molecular self-organization and precellular Darwinian evolution. Naturwissenschaften 66, 228–243 (1979a)

    Google Scholar 

  • Küppers, B. O.: Some remarks on the dynamics of molecular self-organization. Bull. Math. Biol. 41, 803–812 (1979b)

    Google Scholar 

  • Levin, B. R., Stewart, F. M., Chao, L.: Resource-limited growth, competition, and predation: A model and experimental studies with bacteria and bacteriophage. American Naturalist 111, 3–24 (1977)

    Google Scholar 

  • Levin, S. A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Amer. Natural. 104, 413–423 (1970)

    Google Scholar 

  • Lohrmann, R., Bridson, P. K., Orgel, L. E.: Efficient metal-ion catalyzed template-directed oligonucleotide synthesis. Science 208, 1464–1465 (1980a)

    Google Scholar 

  • Lohrmann, R., Orgel, L. E.: Efficient catalysis of polycytidylic acid-directed oligoguanylate formation by Pb2 +. J. Mol. Biol. 142, 555–567 (1980b)

    Google Scholar 

  • Maynard-Smith, J.: The evolution of sex. Cambridge: Cambridge University Press 1978

    Google Scholar 

  • Miller, S. L., Orgel, L. E.: The origins of life on the earth. Englewood Cliffs: Prentice Hall 1974

    Google Scholar 

  • Milstein, J., Bremermann, H. J.: Parameter identification of the Calvin photosynthesis cycle. J. Math. Biol. 7, 99–116 (1979).

    Google Scholar 

  • Morowitz, H. J.: Biological self-replicating systems. In: Snell, F. M. (ed.) Progress in theoretical biology, vol. 1. New York: Academic Press 1967

    Google Scholar 

  • National Research Council. Origin and evolution of life — Implications for the planets: A scientific strategy for the 1980's. National Academic Press (Available from Space Science Board) (1981)

  • Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems: From dissipation structures to order through fluctuations. New York: Wiley-Interscience 1977

    Google Scholar 

  • Nicolis, C.: Mathematical aspects of biological regulatory processes. In: Thomas, R. (ed.) Kinetic logic. A Boolean approach to the analysis of complex regulatory systems. Lecture notes in biomathematics. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Niesert, U., Harnasch, D., Bresch, C.: Origin of life between Scylla and Charybdis. J. Mol. Evol. 17, 348–353 (1981)

    Google Scholar 

  • Novick, R. P.: Plasmids. Sci. Amer. 243, 102 (1980)

    Google Scholar 

  • Oparin, A. I.: The pathways of the primary development of metabolism and artificial modeling of this development in coacervate drops. In: Fox, S. W. (ed.) The origin of prebiological systems and of their molecular matrices, pp. 331–346. New York: Academic Press 1965

    Google Scholar 

  • Ptashne, M., Johnson, A. D., Pabo, C. O.: A genetic switch in a bacterial virus. Scientific American 247, no. 5, 128–140 (1982)

    Google Scholar 

  • Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization, Part I. A model for catalytic hypercycles. Bull. Math. Biol. 40, 743–769 (1978)

    Google Scholar 

  • Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization, Part III: Cooperative and competitive behavior of hypercycles. J. Diff. Equal. 32, 357–368 (1979)

    Google Scholar 

  • Spiegelman, J.: An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4, 213 (1971)

    Google Scholar 

  • Sumper, M., Luce, R.: Evidence for de novo production of self-duplicating and environmentally adapted RNA structures by bacteriophage 68- replicase. Proc. Natl. Acad. Sci. USA 72, 162–166 (1975)

    Google Scholar 

  • Tully, J. G., Razin, S.: The mollicutes (mycoplasmas). In: Graevenitz, A., von, (ed.) Handbook of microbiology, vol. 1. Boca Raton: CRC Press 1977

    Google Scholar 

  • Watson, J.: Molecular biology of the gene. Menlo Park: Benjamin. 1976

    Google Scholar 

  • Zindler, N.: RNA phages. Cold Spring Harbor Laboratory 1975

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremermann, H.J. Parasites at the origin of life. J. Math. Biology 16, 165–180 (1983). https://doi.org/10.1007/BF00276055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276055

Key words

Navigation