Skip to main content
Log in

Threshold conditions for a diffusive model of a myelinated axon

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper develops and uses comparison principles to study the time evolution of solutions to problems of the form

$$\begin{gathered} v_t = v_{xx} - gv,{\text{ for }}x \in \mathbb{R}\backslash \mathbb{Z}{\text{ (}}g{\text{ = constant),}} \hfill \\ v_t = f\left( v \right) + v_x \left( {n + ,t} \right) - v_x \left( {n - ,t} \right),{\text{ for }}x = n \in \mathbb{Z} \hfill \\ \end{gathered} $$

. Such a system models an infinite myelinated axon with discrete, excitable nodes spaced unit distant apart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxley, A. F., Stämpfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibers. J. Physiol. 108, 315–339 (1949)

    Google Scholar 

  2. Morell, P., Norton, W. T.: Myelin. Sci. Amer. 242, 88–118 (1980)

    Google Scholar 

  3. Rashevsky, N.: Mathematical biophysics. Vol. 1. New York: Dover Publ. 1960

    Google Scholar 

  4. Scott, A. C.: Analysis of a myelinated nerve model. Math. Biophysics 26, 247–254 (1964); More on myelinated nerve model analysis. ibid 29, 363–371 (1967)

    Google Scholar 

  5. Kompaneyeto, A. S., Gurovich, V. T.: Propagation of an impulse in a nerve fibre. Biophysics 11, 1049–1052 (1966)

    Google Scholar 

  6. McNeal, D. R.: Analysis of a model for excitation of myelinated nerve. IEEE Biomed. Eng. 23, 329–337 (1976)

    Google Scholar 

  7. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosciences 54, 181–190 (1981)

    Google Scholar 

  8. Bell, J., Cosner, C.: Threshold behavior and propagation for nonlinear difference-differential systems motivated by modeling myelinated nerve axons. Quart. Appl. Math. in press (1983)

  9. Cole, K. S.: Membranes, ions, impulses. Berkeley: U. Calif. Press 1968

    Google Scholar 

  10. FitzHugh, R.: Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys. J. 2, 11–21 (1962)

    Google Scholar 

  11. Goldman, L., Albus, J. S.: Computation of impulse conduction in myelinated fibres; theoretical basis of the velocity-diameter relation. Biophys. J. 8, 596–607 (1968)

    Google Scholar 

  12. Hastings, S. P.: Some mathematical problems arising in neurobiology. CIME lecture notes, Iannelli, M. (ed.) (1980)

  13. Rinzel, J.: Integration and propagation of neuroelectric signals. In: Studies in mathematical biology. Levin, S. A., (ed.) MAA Studies in Mathematics, Vol. 15, 1978

  14. Clark, J., Plonsey, R.: A mathematical evaluation of the core conductor model. Biophys. J. 6, 95–112 (1966)

    Google Scholar 

  15. Jack, J. J. B., Noble, D., Tsien, R. W.: Electric current flow in excitable cells. Oxford: Oxford Press 1975

    Google Scholar 

  16. Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial differential equations and related topics. Lecture notes in mathematics, Vol. 446. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  17. Friedman, A.: Partial differential equations of parabolic type. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1964

    Google Scholar 

  18. Rabinovich, M. I.: Strange attractors in modern physics. Ann. N. Y. Acad. Sci. 357, 435–451 (1980)

    Google Scholar 

  19. Peitgen, H. O.: Phase transitions in the homoclinic regime of area preserving diffeomorphisms. In: Haken, H., (ed.) Evolution of order and chaos. Berlin-Heidelberg-New York: Springer 1982

    Google Scholar 

  20. Bell, J.: Parametric dependence of conduction speed for a diffusive model of myelinated axon, preprint (submitted)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF grant MCS-8101666

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, J., Cosner, C. Threshold conditions for a diffusive model of a myelinated axon. J. Math. Biology 18, 39–52 (1983). https://doi.org/10.1007/BF00275909

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275909

Key words

Navigation