Skip to main content
Log in

Defective excision and postreplication repair of UV-damaged DNA in a recL mutant strain of E. coli K-12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The mutation recL152 leads to a reduction of excision repair as measured by an increase in the time required to close uvrA uvrB dependent incision breaks, and by a reduction of host cell reactivation ability. Postreplication repair is also delayed when measured in a uvrB5 recL152 double mutant. Such a determination could not be made using the recL152 single mutant because the excision defect led to an accumulation of breaks in the unlabeled high molecular weight DNA to which the labeled DNA synthesized after irradiation must attach in order to achieve normal high molecular weight. Further, the recL gene product seems to be required to rejoin breaks in parental strand DNA which are generated during postreplication repair, since such gaps accumulate in a recL152 uvrB5 double mutant but not in a recL + uvrB5 single mutant. We have noticed a striking phenotypic similarity between recL152 and polA1 and suggest that recL152 is required for full in vivo activity of DNA polymerase I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, J., Thomas, C.A.: The anatomy of the T5 bacteriophage DNA molecule. J. Mol. Biol. 18, 262–291 (1966)

    Google Scholar 

  • Bachmann, B.J.: Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 36, 525–557 (1972)

    Google Scholar 

  • Bachmann, B.J., Low, K.B., Tylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Boyce, R.P., Setlow, R.B.: A simple method of incresing the incorporation of thymidine into the deoxyribonucleic acid of Escherichia coli. Biochim. Biophys. Acta 61, 618–620 (1962)

    Google Scholar 

  • Boyce, R.P., Howard-Flanders, P.: Release of ultraviolet lightinduced thymine dimers from DNA in E. coli K-12. Proc. Nat. Acad. Sci., U.S.A. 51, 293–300 (1964)

    Google Scholar 

  • Brendel, M., Haynes, R.H.: Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Molec. gen. Genet. 125, 197–216 (1973)

    Google Scholar 

  • Bridges, B.A.: Recent advances in basic mutation research. Address to the 6th annual meeting of the European Environmental Mutagen Society at Gernrode, Oct. 1976 (1977)

  • Clark, A.J., Margulies, A.D.: Isolation and characterization of recombination deficient mutants of Escherichia coli K-12. Proc. Nat. Acad. Sci., U.S.A. 52, 451–459 (1965)

    Google Scholar 

  • Clark, A.J.: Recombination deficient mutants of E. coli and other bacteria. Ann. Rev. Genetics 7, 67–86 (1973)

    Google Scholar 

  • Demerec, M., Adelberg, E.A., Clark, A.J., Hartman, P.E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–67 (1966)

    Google Scholar 

  • Freifelder, D.: Molecular weights of coliphages and coliphage DNA IV. Molecular weights from bacteriophages T4, T5 and T7 and the general problem of determination of M. J. Mol. Biol. 54, 567–577 (1970)

    Google Scholar 

  • Ganesan, A.K., Smith, K.C.: Dark recovery processes in Escherichia coli irradiated with ultraviolet light III. Effect of rec mutations on recovery of excision-deficient mutants of Escherichia coli K-12. J. Bacteriol. 102, 404–410 (1970)

    Google Scholar 

  • Gillin, F.D., Nossal, N.G.: Control of mutation frequency by bacteriophage T4 DNA polymerase I. The CB120 antimutator DNA polymerase is defective in strand displacement. J. Biol. Chem. 17, 5219–5224 (1976)

    Google Scholar 

  • Goodman, M.F., Gore, W.C., Muzyczka, N., Bessman, M.J.: Studies on the biochemical basis of spontaneous mutation III. Rate model for DNA polymerase-effected nucleotide misincorporation. J. Mol. Biol. 88, 423–435 (1975)

    Google Scholar 

  • Horii, Z-I., Clark, A.J.: Genetic analysis of the RecF pathway to genetic recombination in Escherichia coli: isolation and characterization of mutants. J. Mol. Biol. 80, 327–344 (1973)

    Google Scholar 

  • Howard-Flanders, P.: DNA repair. Ann. Rev. Biochem. 37, 175–200 (1968)

    Google Scholar 

  • Kanner, L., Hanawalt, P.: Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem. Biophys. Res. Comm. 39, 149–155 (1970)

    Google Scholar 

  • Kato, T.: Excision repair characteristics of recB -res- and uvrC - strains of Escherichia coli. J. Bacteriol. 112, 1237–1246 (1972)

    Google Scholar 

  • Klein, A., Niebch, U.: Host-cell reactivation in strains of E. coli lacking DNA polymerase activity in vitro. Nature New Biology 229, 82–84 (1971)

    Google Scholar 

  • Latarjet, R., Morenne, R., Berger, R.: Un appareil simple pour le dosage des rayonnements ultraviolets emis par les lampes germicides. Annales de l'Inst. Past. 85, 174–184 (1953)

    Google Scholar 

  • Ley, R.D.: Ultraviolet-light-induced incorporation of bromodeoxyuridine into parental DNA of an excision deficient cell of Escherichia coli. In Molecular mechanisms for repair of DNA (Eds. Hanawalt, P.C. and Setlow, R.B.), pp 313–316. New York, New York: Plenum Press 1975

    Google Scholar 

  • Mattern, I.E., Houtman, P.C.: Properties of uvrE mutants of Escherichia coli K-12 II. Construction and properties of pol and rec derivatives. Mutation Res. 25, 281–287 (1974)

    Google Scholar 

  • McKeown, M., Kahn, M., Hanawalt, P.: Thymidine uptake and ultilization in Escherichia coli: a new gene controlling nucleoside transport. J. Bacteriol. 126, 814–822 (1976)

    Google Scholar 

  • Monk, M., Peacey, M., Gross, J.D.: Repair of damage induced by ultraviolet light in DNA polymerase-defective Escherichia coli cells. J. Mol. Biol. 58, 628–630 (1971)

    Google Scholar 

  • Radman, M.: Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In Molecular and environmental aspects of mutagenesis (Eds. Prakash, L., Sherman, F., Miller, M., Lawrence, C.W., and H. Taber) Chapter 8, Springfield, Ill.: C.C. Thomas 1974

    Google Scholar 

  • Rupp, W.D., Howard-Flanders, P.: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291–304 (1968a)

    Google Scholar 

  • Rupp, W.D., Howard-Flanders, P.: Sedimentation and equilibrium density gradient methods in the study of post-replication repair. In Methods in enzymology (Eds. Grossman, L., and Moldave, K.) pp. 237–244. New York: Academic Press 1958b

    Google Scholar 

  • Rupp, W.D., Wilde III, C.E., Reno, D.L., Howard-Flanders, P.: Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J. Mol. Biol. 61, 25–44 (1971)

    Google Scholar 

  • Sedgwick, S.G.: Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J. Bacteriol. 123 154–161 (1975a)

    Google Scholar 

  • Sedgwick, S.G.: Inducible error-prone repair in Escherichia coli Proc. Nat. Acad. Sci., U.S.A. 72, 2753–2757 (1975b)

    Google Scholar 

  • Seliakova, M., Brozmanova, J., Slezarikova, V., Masek, F., Fandlova, E.: Function of the UVR marker in dark repair of DNA molecules. Neoplasma 22, 361–384 (1975)

    Google Scholar 

  • Setlow, R.B., Carrier, W.L.: The disappearance of thymine dimers from DNA: An error correcting mechanism. Proc. Nat. Acad. Sci., U.S.A. 51, 226–231 (1964)

    Google Scholar 

  • Sinzinis, B.I., Smirmov, G.B., Saenko, A.S.: Repair deficiency in Escherichia coli UV-sensitive mutator strain uvr502. Biochem. Biophys. Res. Comm. 53, 309–316 (1973)

    Google Scholar 

  • Smirnov, G.B., Filkova, E.V., Skavronskaya, A.G.: Ultraviolet sensitivity, spontaneous mutability and DNA degradation in Escherichia coli strains carrying mutations in uvr and rec genes. J. Gen. Microbiol. 76, 407–416 (1973)

    Google Scholar 

  • Smirnov, G.B., Filkova, E.V., Skavronskaya, A.G., Saenko, A.D., Sinzinis, B.I.: Loss and restoration of viability of E. coli due to combinations of mutations affecting DNA polymerase I and repair activities. Molec. gen. Genet. 121, 139–150 (1973)

    Google Scholar 

  • Smith, K.C., Meun, D.H.C.: Repair of radiation induced damage in Escherichia coli I. Effect of rec mutations on postreplication repair of damage due to ultraviolet radiation. J. Mol. Biol. 51, 459–472 (1970)

    Google Scholar 

  • Tait, R.C., Harris, A.L., Smith, D.W.: DNA repair in Escherichia coli mutants deficient in DNA polymerases I, II and III. Proc. Nat. Acad. Sci., U.S.A. 71, 675–679 (1974)

    Google Scholar 

  • Van Sluis, C.A., Mattern, I.E., Paterson, M.C.: Properties of uvrE mutants of Escherichia coli K12 I. Effects of UV irradiation on DNA metabolism. Mutn. Res. 25, 273–279 (1974)

    Google Scholar 

  • Willets, N.S., Clark, A.J., Low, K.B.: Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J. Bacteriol. 97, 244–249 (1969)

    Google Scholar 

  • Witkin, E.M.: Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol. 20, 17–55 (1967)

    Google Scholar 

  • Youngs, D.A., Smith, K.C.: The involvenent of polynucleotide ligase in the repair of UV-induced DNA damage in Escherichia coli K12 cells. Molec. gen. Genet. in press (1977)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Witkin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, R.H., Clark, A.J. Defective excision and postreplication repair of UV-damaged DNA in a recL mutant strain of E. coli K-12. Molec. Gen. Genet. 155, 267–277 (1977). https://doi.org/10.1007/BF00272805

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272805

Keywords

Navigation