Skip to main content
Log in

Phytoplankton dynamics and sedimentation processes during spring and summer in Balsfjord, Northern Norway

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

Chlorophyll a, phytoplankton species composition and carbon (PPC) estimated from cell-counts, were monitored together with hydrographic parameters and nutrients in the upper 50 m of Balsfjord (ca. 70° N), northern Norway between 08 February and 29 June 1982. Sediment traps were placed at 10, 50, 100, and 170 m (10 m above bottom) for intervals of 5–20 days during the study period. Trap contents were analyzed for phytoplankton as above; dry weight, particulate organic material (POM), particulate organic nitrogen and carbon (PON and POC), ash, and particulate phosphorus were also measured. The phytoplankton community exhibited three main phases: During the first (02–15 April, chiefly surface biomass) and the second (20 April–10 May, deep biomass-maximum and spring bloom peak) periods, Phaeocystis pouchetii dominated biomass (ca. 50% of PPC) followed by vegetative cells of Chaetoceros socialis. In the third period (10 May onwards, characterized by surface estuarinecir-culation), dino- and microflagellates dominated the low post-bloom biomass. Protozooplankton comprising tintinnids, other ciliates and heterotrophic dinoflagellates increased in abundance. Vegetative cells of phytoplankton were scarce in trap collections at 50 m or below; resting cells of Chaetoceros comprised nearly all the “intact” sedimenting phytoplankton. Krill faeces accounted for >90% by volume of the total faecal material trapped, despite a >2∶1 biomass dominance of copepods in the fjord. The greatest sedimentation rates of krill faeces were at > 100 m, reflecting the downward migration of krill during the day. In all, 2–3 g Cm−2 of krill faeces were collected, representing ca. twice that from intact phytoplankton cells. POC in the traps at ≥50 m was ca. 11 gm−2, accounting for ca. 17% of the estimated primary production during the study period. As the secondary production is high, a large proportion of the production of P. pouchetii must be grazed by herbivores. Copepod faeces are probably remineralized in the euphotic zone, while those of krill provide the major coupling between the pelagial and the benthos. The implications of such a sedimentation model for partitioning energy flow between the pelagial and the benthos is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel MV (1984) Detrital organic fluxes through pelagic ecosystems. In: Fasham MJR (ed) Flows of material and energy in marine ecosystems: Theory and practice, pp 475–516

  • Ansell AD (1974) Sedimentation of organic detritus in Loch Etive and Creran, Argyll, Scotland. Mar Biol 27:263–273

    Google Scholar 

  • Batje M, Michaelis H (1986) Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Mar Biol 93:21–27

    Google Scholar 

  • Bienfang PK (1980) Herbivore diet affects fecal pellet settling. Can J Fish Aquat Sci 37:1352–1357

    Google Scholar 

  • Bienfang PK (1981) Sinking rates of heterogeneous, temperate phytoplankton populations. J Plankton Res 3:235–253

    Google Scholar 

  • Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrol 42:15–55

    Google Scholar 

  • Blomquist S, Kofoed C (1981) Sediment trapping-a subaquatic in situ experiment. Limnol Oceanogr 26:585–590

    Google Scholar 

  • Bodungen Bv (1986) Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica-implications from sediment trap collections. Polar Biol 6:153–160

    Google Scholar 

  • Bodungen BV, Smetacek VS, Tilzer MM, Zeitzschel (1986) Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep-Sea Res 33:177–194

    Google Scholar 

  • Bodungen Bv, Fischer G, Nöthig E-M, Wefer G (1987) Sedimentation of krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica. Mitt Geol-Paläont Inst Univ Hamburg, SCOPE/UNEP Sonderband Heft 62, pp 243–257

  • Burrell DC (1989) Carbon flow in fjords. Oceanogr Mar Biol Annu Rev 26:143–226

    Google Scholar 

  • Cadee GC, Hegeman J (1986) Seasonal and annual variation in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Neth J Sea Res 20:29–36

    Google Scholar 

  • Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, Cambridge, 278 pp

    Google Scholar 

  • Davis CO, Hollibaugh JT, Seibert DLR, Thomas WH, Harrison PJ (1980) Formation of resting spores by Leptocylindrus danicus (Bacillariophyceae) in a controlled ecosystem experiment. J Phycol 16:296–302

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    Google Scholar 

  • Dunbar RB, Berger WH (1981) Fecal pellet flux to modern bottom sediment of Santa Barbara Basin (California) based on sediment trapping. Geol Soc Am Bull, Part I 92:212–218

    Google Scholar 

  • Edler L (ed) (1979) Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Mar Biol Publ 5, pp 38

  • Edwards A, Edelsten DJ, Saunders MA, Stanley SO (1980) Renewal and entrainment in Loch Eil: A periodically ventilated Scottish Fjord. In: Freeland HJ, Farmer DM, Levings CD (eds) Fjord oceanography. Plenum Press, New York, pp 523–530

    Google Scholar 

  • Eilertsen HC, Taasen JP (1984) Investigations on the plankton community of Balsfjorden, northern Norway: The phytoplankton 1976–1978, environmental factors, dynamics of growth, and primary production. Sarsia 69:1–15

    Google Scholar 

  • Eilertsen HC, Falk-Petersen S, Hopkins CCE, Tande K (1981a) Ecological investigations on the plankton community of Balsfjorden, northern Norway: Program for the project, topography, and physical environment. Sarsia 66:25–34

    Google Scholar 

  • Eilertsen HC, Schei B, Taasen JP (1981b) Ecological investigations on the plankton community of Balsfjorden, northern Norway: The phytoplankton 1976–1978, abundance, species compositions, and succession. Sarsia 66:129–141

    Google Scholar 

  • Eliassen J-E, Vahl O (1982) Seasonal variations in biochemical composition and energy content of liver, gonad and muscle of mature and immature cod, Gadus morhua (L.) from Balsfjorden, northern Norway. J Fish Biol 20:707–716

    Google Scholar 

  • Evans RA, Hopkins CCE (1981) Distribution and standing stock of Zooplankton sound-scattering layers along the north Norwegian coast in February–March, 1978. Sarsia 66:147–160

    Google Scholar 

  • Fowler SW, Small LF (1972) Sinking rates of euphausiid fecal pellets. Limnol Oceanogr 17:273–296

    Google Scholar 

  • French F, Hargraves PE (1980) Physiological characteristics of plankton diatom resting spores. Mar Biol Lett 1:185–195

    Google Scholar 

  • Gaarder KR (1938) Phytoplankton studies from the Tromsø district 1930–1931. Tromsø Mus Årsh 55:1–195

    Google Scholar 

  • Gade HG, Edwards A (1980) Deep water renewal in fjords. In: Freeland HJ, Farmer DM, Levings CD (eds) Fjord oceanography. Plenum Press, New York, pp 453–489

    Google Scholar 

  • Gardner WD (1980a) Sediment trap dynamics and calibration: A laboratory evaluation. J Mar Res 38:17–39

    Google Scholar 

  • Gardner WD (1980b) Field assessment of sediment traps. J Mar Res 38:41–52

    Google Scholar 

  • Gardner WD, Southard JB, Hollister CD (1985) Sedimentation, resuspension and chemistry of particles in the Northwest Atlantic. Mar Geol 65:199–242

    Google Scholar 

  • Garrison DL (1981) Monterey Bay plankton. II. Resting spore cycles of some coastal diatom populations. J Plankton Res 3:137–156

    Google Scholar 

  • Gieskes WWC, von Bennekom AJ (1973) Unreliability of the 14C method for estimating primary productivity in Dutch coastal waters. Limnol Oceanogr 18:494–495

    Google Scholar 

  • Graf G, Schulz R, Peinert R, Meyer-Reil LA (1983) Benthic response to sedimentation events during autumn to spring at a shallow-water station in the western Kiel Bight. I. Analysis of processes on a community level. Mar Biol 77:235–246

    Google Scholar 

  • Grasshoff K (ed) (1976) Methods of seawater analysis. Verlag Chemie, Weinheim (FRG), 317 pp

  • Gray JS (1981) The ecology of marine sediments. Cambridge series in modern biology 2. Cambridge University Press, Cambridge, 185 pp

    Google Scholar 

  • Gulliksen B (1982) Sedimentation close to a near vertical rocky wall in Balsfjorden, northern Norway. Sarsia 67:21–27

    Article  CAS  Google Scholar 

  • Hargrave BT (1980) Factors affecting the flux of organic matter to sediments in a marine bay. In: Tenore KR, Coull BC (eds) Marine benthic dynamics. University of South Carolina Press, Columbia, pp 243–263

    Google Scholar 

  • Hargrave BT, Taguchi S (1978) Origin of deposited material sedimented in a marine bay. J Fish Res Board Can 35:1604–1613

    Google Scholar 

  • Hendrikson P (1975) Auf-und abbauprozesse particularer organischer Substanz anhand von Seston-und Sinkstoffanalysen. Doctor thesis, University of Kiel (FRG), 160 pp

  • Hopkins CCE (1981) Ecological investigations on the zooplankton community of Balsfjorden, northern Norway: Changes in zooplankton abundance and biomass in relation to phytoplankton and hydrography March 1976–February 1977. Kieler Meeresforsch Sonderh 5:124–139

    Google Scholar 

  • Hopkins CCE (1987) Scenario of growth and mortality: A spreadsheet production-model in Pandalus borealis. ICES CM 1987/K:51, 24 pp

  • Hopkins CCE, Evans RA (1979) Diurnal and horizontal variations in a zooplankton sound scattering layer. In: Naylor E, Hartnoll R (eds) Cyclic phenomena in marine animals and plants. Proc 13th Eur Mar Biol Symp. Pergamon, London, pp 375–382

    Google Scholar 

  • Hopkins CCE, Gulliksen B (1978) Diurnal vertical migration and zooplankton-epibenthos relationships in a north Norwegian fjord. In: McLusky DS, Berry AJ (eds) The physiology and behaviour of marine organisms. Proc 12th Eur Mar Biol Symp. Pergamon, London, pp 271–280

    Google Scholar 

  • Hopkins CCE, Falk-Petersen S, Tande K, Eilertsen HC (1978) A preliminary study of zooplankton sound scattering layers in Balsfjorden, northern Norway: Structure, energetics and migrations. Sarsia:255–264

  • Hopkins CCE, Pettersen F, Evans RA, Greenlaw CF (1982) Zooplankton sound scattering layers in north Norwegian fjords: specifications and functioning of the acoustical, data-and net-sampling systems. Sarsia 67:187–199

    Google Scholar 

  • Hopkins CCE, Tande KS, Grønvik S, Sargent JR (1984) Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: An analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunner), Thysanoessa inermis (Krøyer) and Thysanoessa raschi (M. Sars). J Exp Mar Biol Ecol 82:77–79

    Google Scholar 

  • Hopkins CCE, Nyholmen O, Solheim L (1986) Qualitative and quantitative models relating otolith zone deposition to growth and condition in sexually mature male and female capelin (Mallotus villosus). Polar Biol 6:25–36

    Google Scholar 

  • Hopkins CCE, Grotnes PE, Eliassen J-E (1989) Organization of a fjord community at 70° North: The pelagic food web in Balsfjord, northern Norway. Proc ICES Symp Mar Sci Arct Sub-Arct Regions (Santander, Spain, Sept 1987). Rapp P-V Réun Cons Int Explor Mer 188:146–153

    Google Scholar 

  • Høpner Petersen G (1984) Energy flow in comparable aquatic ecosystems from different climatic zones. Rapp P-V Réun Cons Int Explor Mer 183:119–125

    Google Scholar 

  • Høpner Petersen G, Curtis MA (1980) Differences in energy flow through major components of subarctic, temperate and tropical marine shelf systems. Dana 1:53–64

    Google Scholar 

  • Huntley M, Tande KS, Eilertsen HC (1987) On the trophic fate of Phaeocystis pouchetii. II. Grazing rates of Calanus hyperboreus and different size categories of P. pouchetii. J Exp Mar Biol Ecol 110:197–212

    Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, cl, c2, in higher plants and phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Jones R (1982) Ecosystems, food chains, and fish yields. In: Pauly D, Murphy DI (eds) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9, ICLARM Manila Philippines, CSIRO Cronulla Australia, pp 195–239

    Google Scholar 

  • Klemetsen A (1982) Food and feeding of cod from the Balsfjord, northern Norway during a one-year period. J Cons Int Explor Mer 40:101–111

    Google Scholar 

  • Knauer GA, Martin JH, Bruland KW (1979) Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the North East Pacific. Deep-Sea Res 26:97–108

    Google Scholar 

  • Kornmann P (1955) Beobachtungen von Phaeocystis-Kulturen. Helgoländer Wiss Meeresunters 5:218–233

    Google Scholar 

  • Krause M (1981) Vertical distribution of fecal pellets during FLEX 76. Helgoländer Wiss Meeresunters 34:313–327

    Google Scholar 

  • Lännergren C (1979) Buoyance of natural populations of marine phytoplankton. Mar Biol 54:1–10

    Google Scholar 

  • Lenz J (1971) Zur Methode der Sestonbestimmung. Kieler Meeresforsch 27:180–193

    Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol Oceanogr 12:343–346

    Google Scholar 

  • Marshall SM, Orr AP (1972) The biology of a marine copepod. Springer, Berlin, pp 195

    Google Scholar 

  • Martens P (1972) Zur Charakterisierung der Kotballen von vier dominierenden Copepodenarten der Kieler Bucht. Thesis, University of Kiel (FRG), 106 pp

    Google Scholar 

  • Mauchline J (1980) The biology of euphausiids. Adv Mar Biol 18:373–554

    Google Scholar 

  • Mills EL (1975) Benthic organisms and the structure of marine ecosystems. J Fish Res Board Can 32:1657–1663

    Google Scholar 

  • Moore HB (1931) The specific identification of fecal pellets. J Mar Biol Assoc UK 24:359–365

    Google Scholar 

  • Peinert R, Saure A, Stegmann P, Stienen C, Haardt H, Smetacek V (1982) Dynamics of primary production and sedimentation in a coastal ecosystem. Neth J Sea Res 16:276–289

    Google Scholar 

  • Platt HM (1979) Sedimentation and distribution of organic matter in a subarctic marine bay. Est Coast Mar Sci 9:51–63

    Google Scholar 

  • Reid PC (1987) Mass encystment of a planktonic oligotrich ciliate. Mar Biol 95:221–230

    Google Scholar 

  • Sakshaug E, Myklestad S (1973) Studies on the phytoplankton ecology of Trondheimsfjorden. III. Dynamics of phytoplankton blooms in relation to environmental factors, bioassay experiments and parameters for the physiological state of the populations. J Exp Mar Biol Ecol 11:157–188

    Google Scholar 

  • Sargent JR, Falk-Petersen S (1989) The lipid biochemistry of Calanus. Proc 3rd Int Conf Copepoda. London, 10–14 August 1987. Hydrobiologia 167/168:101–114

    Google Scholar 

  • Sargent JR, Hopkins CCE, Seiring JV, Youngson A (1983) Partial characterization of organic material in surface sediments from Balsfjorden, northern Norway, in relation to its origin and nutritional value for sediment-ingesting animals. Mar Biol 76:87–94

    Google Scholar 

  • Saure A (1981) Die Zufuhr von organischer Substanz zum Sediment und ihre Bedeutung für das Ökosystem Kieler Bucht. Diplom Arb, Univ Kiel 104 pp

  • Schaefer MB (1965) The potential harvest of the sea. Trans Am Fish Soc 94:123–128

    Google Scholar 

  • Schei B (1974) Phytoplankton investigations in Skjomen, a fjord in northern Norway, 1970–1971. Astarte 7:43–59

    Google Scholar 

  • Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Annu Rev 8:353–414

    Google Scholar 

  • Smetacek V (1975) Die Sukzession des Phytoplanktons in der Kieler Bucht. Doctor thesis. University of Kiel (FRG), 151 pp

    Google Scholar 

  • Smetacek V (1980) Zooplankton standing stock, copepod faecal pellets and particulate matter in Kiel Bight. Est Coast Mar Sci 11:477–490

    Google Scholar 

  • Smetacek V (1984) The supply of food to the benthos. In: Fasham MJ (ed) Flows of matter and energy in marine ecosystems: Theory and practice. Plenum Press, New York, pp 517–548

    Google Scholar 

  • Smetacek V (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251

    Google Scholar 

  • Smetacek V, Brökel Kv, Zeitzschel B, Zenk B (1978) Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar Biol 47:211–226

    Google Scholar 

  • Steele JH (1974) The structure of a marine ecosystem. Harvard University Press, Cambridge Mass, 128 pp

    Google Scholar 

  • Steele JH, Baird JE (1972) Sedimentation of organic matter in a Scottish sea loch. Mem Ist Ital Idrobiol [Suppl] 29:73–88

    Google Scholar 

  • Stegmann P (1981) Beziehungen zwischen Phytoplankton und Zooplankton in der Kieler Bucht. Thesis, University of Kiel (FRG), 78 pp

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fish Res Board Can Bull 167:311 pp

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Perm Int Explor Mer 18:287–295

    CAS  PubMed  Google Scholar 

  • Sælen OH (1950) The hydrography of some fjords in northern Norway. Tromsø Mus Årsh 70:1–93

    Google Scholar 

  • Tande KS, Båmstedt U (1987) On the trophic fate of Phaeocystis pouchetii. I. Copepod feeding rates on solitary cells and colonies of P. pouchetii. Sarsia 72:313–320

    Google Scholar 

  • Turner JT, Ferrante JG (1979) Zooplankton fecal pellets in aquatic ecosystems. Bio Sci 29:670–677

    Google Scholar 

  • UNESCO (1966) Determination of photosynthetic pigments in sea water. Monogr Oceanogr Methodol 1:66 pp

    Google Scholar 

  • Utermöhl H (1931) Neue Wege in der quantitativen Erfassung des Planktons. Verh Int Ver Theor Angew Limnol 5:567–596

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Verh Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Vahl O (1981) Energy transformations by the Icelandic scallop, Chlamys islandica (O.F. Müller), from 70°N. II. The population energy budget. J Exp Mar Biol Ecol 53:297–303

    Google Scholar 

  • Veldhuis MJW, Colijn F, Venekamp LAH (1986) The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:37–48

    Google Scholar 

  • Wassmann P (1984) Sedimentation and benthic mineralization of organic detritus in a Norwegian fjord. Mar Biol 83:83–94

    Google Scholar 

  • Zeitzschel B (1967) Die Bedeutung der Tintinnen als Glied der Nahrungskette. Helg Wiss Meeresunters 15:589–601

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutter, S., Taasen, J.P., Hopkins, C.C.E. et al. Phytoplankton dynamics and sedimentation processes during spring and summer in Balsfjord, Northern Norway. Polar Biol 10, 113–124 (1989). https://doi.org/10.1007/BF00239156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239156

Keywords

Navigation