Skip to main content
Log in

Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Honeybees Apis mellifera were trained to distinguish between the presence and the absence of a rewarded coloured spot, presented on a vertical, achromatic plane in a Y-maze. They were subsequently tested with different subtended visual angles of that spot, generated by different disk diameters and different distances from the decision point in the device. Bees were trained easily to detect bee-chromatic colours, but not an achromatic one. Chromatic contrast was not the only parameter allowing learning and, therefore, detection: α min, the subtended visual angle at which the bees detect a given stimulus with a probability P 0 = 0.6, was 5° for stimuli presenting both chromatic contrast and contrast for the green photoreceptors [i.e. excitation difference in the green photoreceptors, between target and background (green contrast)], and 15° for stimuli presenting chromatic but no green contrast. Our results suggest that green contrast can be utilized for target detection if target recognition has been established by means of the colour vision system. The green-contrast signal would be used as a far-distance signal for flower detection. This signal would always be detected before chromatic contrast during an approach flight and would be learned in compound with chromatic contrast, in a facilitation-like process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31: 1381–1397

    Google Scholar 

  • Backhaus W (1992) Color vision in honey bees. Neurosci Biobehav Rev 16: 1–12

    Google Scholar 

  • Backhaus W (1993) Color vision and color choice behavior of the honeybee. Apidologie 24: 309–331

    Google Scholar 

  • Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honeybee. Biol Cybern 55: 321–331

    Google Scholar 

  • Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56: 293–304

    Google Scholar 

  • Braitenberg V (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7: 235–242

    Google Scholar 

  • Brandt R, Backhaus W, Dittrich M, Menzel R (1993) Simulation of threshold spectral sensitivity according to the color theory for the honeybee. In: Heisenberg M, Elsner N (eds) Gene-brainbehaviour. Proc 21st Göttingen Neurobiology Conference. Thieme, Stuttgart, p 374

    Google Scholar 

  • Butler CG (1951) The importance of perfume in the discovery of food by the worker honey-bee (Apis mellifera L.). Proc R Soc Lond B 138: 403–413

    Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators' colour vision. J Comp Physiol A 171: 171–181

    Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170: 545–563

    Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34: 1489–1508

    Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchung des Farbensehens der Bienen. Z Vergl Physiol 38: 413–478

    Google Scholar 

  • Domjan M, Burkhard B (1986) The principles of learning and behavior. Brooks/Cole, California

    Google Scholar 

  • Faegri K, van der Piji L (1978) The principles of pollination ecology. 3rd ed. Pergamon, Oxford

    Google Scholar 

  • Frisch K (1919) Über den Geruchsinn der Bienen und seine blütenbiologische Bedeutung. Zool Jb Physiol 37: 2–238

    Google Scholar 

  • Frisch Kv (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Sytems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2: 77–92

    Google Scholar 

  • Heiversen Dv (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80: 439–472

    Google Scholar 

  • Hollan PC (1983) “Occasion setting” in Pavlovian feature positive discriminations. In: Commons ML, Herrnstein RJ, Wagner AR (eds) Quantitative analyses of behavior: discrimination processes. Ballinger, Cambridge, vol 4, pp 183–206

    Google Scholar 

  • Kaiser W, Liske E (1974) Die optomotorische Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J Comp Physiol 89: 391–408

    Google Scholar 

  • Kevan PG (1989) How honey bees forage for pollen at skunk cabbage, Symplocarpus foetidus (Araceae). Apidologie 20: 485–490

    Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28: 407–453

    Google Scholar 

  • Kevan PG, Eisikowitch D, Ambrose JD, Kemp JR (1990) Cryptic dioecy and insect pollination in Rosa setiyera Michx. (Rosaceae), a rare plant of Carolinian Canada. Biol J Linn Soc 40: 229–243

    Google Scholar 

  • Kirschfeld K (1973) Optomotorische Reaktionen der Biene auf bewegte“Polarisations-Muster”. Z Naturforsch 28c: 329–338

    Google Scholar 

  • Kugler H (1933) Blütenökologische Untersuchungen mit Hummeln VI. Planta, Arch wiss Bot 19: 781–789

    Google Scholar 

  • Laughlin SB, Horridge GA (1971) Angular sensitivity of the retinula cells of dark-adapted worker bee. Z Vergl Physiol 74: 329–335

    Google Scholar 

  • Lehrer M (1987) To be or not to be a colour-seeing bee. Israel J Entomol 21: 51–76

    Google Scholar 

  • Lehrer M (1993) Parallel processing of motion, shape and colour in the visual system of the bee. In: Wiese K, Gribakin FG, Popov AV, Reinninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 266–272

    Google Scholar 

  • Lehrer M (1994) Spatial vision in the honeybee: the use of different cues in different tasks. Vision Res 34: 2363–2385

    Google Scholar 

  • Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82: 145–147

    Google Scholar 

  • Lehrer M, Srinivasan MV (1993) Object detection by honeybees: Why do they land on edges? J Comp Physiol A 173: 23–32

    Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bees' visual world with a third dimension. Nature 332: 356–357

    Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW (1990) Visual edge detection in the honeybee and its chromatic properties. Proc R Soc Lond B 238: 321–330

    Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56: 22–62

    Google Scholar 

  • Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges langzeitiges Behalten. Z Vergl Physiol 60: 82–102

    Google Scholar 

  • Menzel R (1985) Learning in honeybees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology. Fischer, Stuttgart, pp 55–74

    Google Scholar 

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. The perception of colour. MacMillan, London, pp 262–288

    Google Scholar 

  • Menzel R, Greggers U (1985) Natural phototaxis and its relationship to colour vision in honeybees. J Comp Physiol A 157: 311–321

    Google Scholar 

  • Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68: 81–120

    Google Scholar 

  • Menzel R, Greggers U, Hammer M (1993) Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In: Papaj D, Lewis AC (eds) Insect learning. Ecological and evolutionary perspectives. Chapman & Hall, New York, pp 79–125

    Google Scholar 

  • Rescorla RA, Durlach PJ, Grau JW (1985) Context learning in Pavlovian conditioning. In: Balsam PD, Tomie A (eds) Context and learning. Erlsbaum, Hillsdale, pp 23–56

    Google Scholar 

  • Rossel S (1993) Navigation by bees using polarized skylight. Comp Biochem Physiol 104A: 695–708

    Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323: 128–131

    Google Scholar 

  • Seidl R (1980) Die Sehfelder und Ommatidien-Divergenzwinkel der drei Kasten der Honigbiene (Apis mellifica). Verh Dtsch Zool Ges 1980: 367

    Google Scholar 

  • Snyder A W (1979) Physics of vision in compound eyes. In: Autrum HJ (ed) Vision in invertebrates (Handbook of Sensory Physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp225–313

    Google Scholar 

  • Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162: 159–172

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum HJ (ed) Vision in invertebrates (Handbook of Sensory Physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp357–439

    Google Scholar 

  • Tunstall J, Horridge GA (1967) Electrophysiological investigation of the optics of the locust retina. Z Vergl Physiol 55: 167–182

    Google Scholar 

  • Vallet AM, Coles JA (1993) The perception of small objects by the drone honeybee. J Comp Physiol A 172: 183–188

    Google Scholar 

  • Wehner R (1972) Dorsoventral asymmetry in the visual field of the bee Apis mellifica. J Comp Physiol 77: 256–277

    Google Scholar 

  • Wehner R (1973) The generalization of directional visual stimuli in the honey bee, Apis mellifera. J Insect Physiol 17: 1579–1591

    Google Scholar 

  • Weizsäcker EV (1970) Dressurversuche zum Formensehen der Bienen, insbesonders unter wechselnden Helligkeitsbedingungen. Z Vergl Physiol 69: 296–310

    Google Scholar 

  • Zar JH (1985) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giurfa, M., Vorobyev, M., Kevan, P. et al. Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178, 699–709 (1996). https://doi.org/10.1007/BF00227381

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227381

Key words

Navigation