Skip to main content
Log in

Central serotonin receptors: effector systems, physiological roles and regulation

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Radioligand binding studies have revealed four distinct serotonin (5HT) binding sites in rat brain that are thought to function as 5HT receptors. These include the 5HT-1a, 5HT-1b, 5HT-1c, and 5HT-2 binding sites. Studies have shown that the 5HT-2 binding site mediates a number of effects of 5HT agonists and serves as a 5HT receptor in neuronal and non-neuronal tissues. The 5HT-2 site employs phosphoinositide hydrolysis for signal transduction. The 5HT-1c binding site is also a functional receptor that is linked to phosphoinositide hydrolysis. However, the physiological role of the 5HT-1c receptor is not yet known. Lack of appropriate pharmacological tools for probing the 5HT-1a and 5HT-1b binding sites has made it difficult to definitively determine whether these binding sites are coupled to biochemical effector systems or mediate any of the physiological responses to 5HT agonists. However, there is some evidence that the 5HT-1a site is coupled to adenylate cyclase, and a number of functional roles for the 5HT-1a and 5HT-1b sites have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Latif AA (1986) Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev 38: 227–272

    Google Scholar 

  • Adams WB, Levitan IB (1982) Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase in K+ conductance in Aplysia neuron R15. Proc Natl Acad Sci USA 79: 3877–3880

    Google Scholar 

  • Affolter H, Erne P, Burgisser E, Pletscher A (1984) Calcium as a messenger of 5HT-2 receptor stimulation in human blood platelets. Naunyn-Schmiedeberg's Arch Pharmacol 325: 337–342

    Google Scholar 

  • Aghajanian GK, Gallager DW (1975) Raphe origin of serotonergic nerves terminating in the cerebral ventricles. Brain Res 88: 221–231

    Google Scholar 

  • Akhtar RA, Abdel-Latif AA (1986) Surgical sympathetic denervation increases alpha-1-mediated accumulation of myo-inositol trisphosphate and muscle contraction in rabbit iris dilator smooth muscle. J Neurochem 46: 96–104

    Google Scholar 

  • Awouters F, Leysen JE, De Clerk F, Van Nueten JM (1982) General pharmacological profile of ketanserin (R 41 468), a selective 5HT-2 receptor antagonist. In: DeClerk F, Vanhoutte PM (eds) 5-Hydroxytryptamine in peripheral reactions. Raven, New York, pp 193–197

    Google Scholar 

  • Barbaccia ML, Brunello N, Chuang DM, Costa E (1983) Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. J Neurochem 40: 1671–1679

    Google Scholar 

  • Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol 1, 3, 4, 5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 232: 211–215

    Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212: 849–858

    Google Scholar 

  • Berridge M (1986) Intracellular signalling through inositol trisphosphate and diacylglycerol. Biol Chem Hoppe Seyler 367: 447–456

    Google Scholar 

  • Berridge MJ, Fain FN (1979) Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J 178: 59–69

    Google Scholar 

  • Berridge MJ, Heslop JP (1981) Separate 5-hydroytryptamine receptors on the salivary gland of the blowfly are linked to the generation of either cyclic adenosine 3′,5′ monophosphate or calcium signals. Br J Pharmacol 73: 729–738

    Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206: 587–595

    Google Scholar 

  • Berridge MJ, Dawson C, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212: 473–482

    Google Scholar 

  • Berry-Kravis E, Dawson G (1983) Characterization of an adenylate cyclase-linked serotonin (5HT1) receptor in a neuroblastoma × brain explaint hybrid cell line (NCB-20). J Neurochem 40: 977–985

    Google Scholar 

  • Berry-Kravis E, Dawson G (1985) Possible role of gangliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5HT1) receptor. J Neurochem 45: 1739–1746

    Google Scholar 

  • Blackmore PF, Bocckino SB, Waynick LE, Exton JH (1985) Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol-4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. J Biol Chem 260: 14477–14483

    Google Scholar 

  • Blackshear MA, Steranka LR, Sanders-Bush E (1981) Multiple serotonin receptors: regional distribution and effect of raphe lesions. Eur J Pharmacol 76: 325–334

    Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 221: 303–308

    Google Scholar 

  • Blackshear MA, Friedman RL, Sanders-Bush E (1983) Acute and chronic effects of serotonin antagonists on serotonin binding sites. Naunyn-Schmiedeberg's Arch Pharmacol 324: 125–129

    Google Scholar 

  • Brown E, Kendall DA, Nahorski SR (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterization J Neurochem 42: 1379–1387

    Google Scholar 

  • Buchheit KH, Gunter E, Mutschler E, Richardson B (1985) Study of the contractile effect of 5-hydroxytryptamine in the isolated longitudinal muscle strip from guinea-pig ileum. Evidence for two distinct release mechanisms. Naunyn-Schmiedeberg's Arch Pharmacol 329: 36–41

    Google Scholar 

  • Burgess GM, McKinney JS, Irvine RF, Putney JW (1985) Inositol 1, 4, 5-trisphosphate and inositol 1, 3, 4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells. Biochem J 232: 237–243

    Google Scholar 

  • Chan-Pallay V (1976) Serotonin axons in the supra- and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity. Brain Res 102: 103–130

    Google Scholar 

  • Closse A (1983) [3H]Mesulergine, a selective ligand for serotonin-2 receptors. Life Sci 32: 2485–2495

    Google Scholar 

  • Cohen ML, Colbert WE (1986) Relationship between receptors mediating serotonin (5-HT) contractions in the canine basilar artery to 5-HT1, 5-HT2 and rat stomach fundus 5-HT receptors. J Pharmacol Exp Ther 237: 713–718

    Google Scholar 

  • Cohen ML, Fuller RW, Wiley KS (1981) Evidence for 5-HT2 receptors mediating contraction in vascular smooth muscle. J Pharmacol Exp Ther 218: 421–425

    Google Scholar 

  • Cohen ML, Schenck KW, Colbert W, Wittenauer L (1985) Role of 5-HT2 receptors in serotonin-induced contractions of non-vascular smooth muscle. J Pharmacol Exp Ther 232: 770–774

    Google Scholar 

  • Conn PJ, Sanders-Bush E (1984) Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23: 993–996

    Google Scholar 

  • Conn PJ, Sanders-Bush E (1985) Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J Pharmacol Exp Ther 234: 195–203

    Google Scholar 

  • Conn PJ, Sanders-Bush E (1986a) Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the serotonin 5HT-2 binding site. J Neurosci 6: 3669–3675

    Google Scholar 

  • Conn PJ, Sanders-Bush E (1986b) Biochemical characterization of serotonin stimulated phosphoinositide turnover. Life Sci 38: 663–669

    Google Scholar 

  • Conn PJ, Sanders Bush E (1986c) Agonist induced phosphoinositide hydrolysis in choroid plexus. J Neurochem 47: 1754–1760

    Google Scholar 

  • Conn JP, Sanders-Bush E, Hoffman BJ, Hartig PR (1986a) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci 83: 4086–4088

    Google Scholar 

  • Conn PJ, Janowsky A, Sanders-Bush E (1986b) Denervation supersensitivity of 5HT-1C receptors in rat choroid plexus. Brain Res 400: 396–398

    Google Scholar 

  • Coughlin SR, Moskowitz MA, Levine L (1984) Identification of a serotonin type 2 receptor linked to prostacyclin synthesis in vascular smooth muscle cells. Biochem Pharmacol 33: 692–695

    Google Scholar 

  • Creese K, Sibley DR (1981) Receptor adaptations to centrally acting drugs. Annu Rev Pharmacol Toxicol 21: 357–391

    Google Scholar 

  • Crook RB, Kasagami H, Prusiner SB (1981) Culture and chracterization of epithelial cells from bovine choroid plexus. J Neurochem 37: 845–854

    Google Scholar 

  • Day M, Vane JR (1963) An analysis of the direct and indirect actions of drugs on the isolated guinea-pig ileum. Br J Pharmacol 20: 150–170

    Google Scholar 

  • De Chaffoy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PAJ (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol Chem 260: 7603–7608

    Google Scholar 

  • De Clerck F, Xhonneux B, Leysen J, Janssen PAJ (1984a) Evidence for functional 5-HT2 receptor sites on human blood platelets. Biochem Pharmacol 33:2807–2811

    Google Scholar 

  • De Clerck F, Xhonneux B, Leysen J, Janssen PAJ (1984b) The involvement of 5HT-2 receptor sites in the activation of cat platelets. Thromb Res 33:305–321

    Google Scholar 

  • De Montigny PB, Chaput Y (1984) Electrophysiologically-identified serotonin receptors in the rat CNS: effect of antidepressant treatment. Neuropharmacology 23:1511–1520

    Google Scholar 

  • Devivo M, Maayani S (1985) Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists. Eur J Pharmacol 119:231–234

    Google Scholar 

  • Devivo M, Maayani S (1986) Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238:248–253

    Google Scholar 

  • Dingledine R, Goldstein A (1976) Effect of synaptic transmission blockade on morphine action in the guinea pig myenteric plexus. J Pharmacol Exp Ther 196:97

    Google Scholar 

  • Dolphin AC, Greengard P (1981) Serotonin stimulates phosphorylation of Protein I in the nucleus of rat brain. Nature (London) 289:76–79

    Google Scholar 

  • Doods HN, Kalkman HO, De Jonge A, Thoolen MJMC, Wilffert B, Timmermans PBMWM, Van Zwienten PA (1985) Differential selectivities of RU 24969 and 8-OH-DPAT for the purported 5-HT1a and 5-HT1b binding sites. Correlation between 5-HT1a affinity and hypotensive activity. Eur J Pharmacol 112:363–370

    Google Scholar 

  • Dumbrille-Ross A, Tang SW (1983) Manipulations of synaptic serotonin: Discrepancy of effects on serotonin 5-HT-1 and 5-HT-2 sites. Life Sci 32:2677–2684

    Google Scholar 

  • Engel G, Gothert M, Muller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983) Evidence for common pharmacological properties of 3H-5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn-Schmiedeberg's Arch Pharmacol 324:116–124

    Google Scholar 

  • Engel G, Muller-Schweinitzer E, Palacios JM (1984) 2-[125Iodo]LSD, a new ligand for the characterisation and localisation of 5-HT2 receptors. Naunyn-Schmiedeberg's Arch Pharmacol 325:328–336

    Google Scholar 

  • Enjalbert A, Bourgoin S, Hamon M, Adrien J, Bockaert J (1978a) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. I. Development and distribution of serotonin and dopamine-sensitive adenylate cyclases in rat and guinea pig brain. Mol Pharmacol 14:2–10

    Google Scholar 

  • Enjalbert A, Bourgoin S, Hamon M, Adrien J, Bockaert J (1978b) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. II. Comparison with dopamine and isoproterenol sensitive adenylate cyclases in rat brain. Mol Pharmacol 14:11–23

    Google Scholar 

  • Evans T, Hepler JR, Masters SB, Brown JH, Harden TK (1985) Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors. Biochem J 232:751–757

    Google Scholar 

  • Fain JN, Berridge MJ (1979) Relationship between hormonal activation of phoshatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J 176:45–58

    Google Scholar 

  • Fillion G, Rousselle JC, Beaudoin D, Pradelles P, Goiny M, Dray F, Jacob J (1979) Serotonin sensitive adenylate cyclase in horse brain synaptosomal membranes.Life Sci 24:1813–1822

    Google Scholar 

  • Fozard JR (1984) Neuronal 5HT receptors in the periphery. Neuropharmacology 23:1473–1486

    Google Scholar 

  • Friedman E, Cooper TB, Dallob A (1983) Effects of chronic antidepressant treatment on serotonin receptor activity in mice. Eur J Pharmacol 89:69–76

    Google Scholar 

  • Friedman RL, Barrett RJ, Sanders-Bush E (1984) Discriminative stimulus properties of quipazine: mediation by serotonin-2 binding sites. J Pharmacol Exp Ther 228:628–635

    Google Scholar 

  • Fujita K, Aguilera G, Catt KJ (1979) The role of cyclic AMP in aldosterone production by isolated zona glomerulosa cells. J Biol Chem 254:8567–8574

    Google Scholar 

  • Gaddum JH, Picarrelli ZP (1957) Two kinds of tryptamine receptors. Br J Pharmacol 12:323–328

    Google Scholar 

  • Gaddum JH, Hameed KA (1954) Drugs which antagonize 5-hydroxytryptamine. Br J Pharmacol 9:240–248

    Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91:189–186

    Google Scholar 

  • Glusman S, Kravitz EA (1982) The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations. J Physiol 325:223–241

    Google Scholar 

  • Godfrey PP, McClue SJ, Minchin MCW, Young M (1985) RU 24969, a 5HT-1 agonist, stimulates inositol phospholipid breakdown in rat brain slices. Br J Pharmacol 83:112P

    Google Scholar 

  • Goy MF, Schwarz TL, Kravitz EA (1984) Serotonin-induced protein phosphorylation in a lobster neuromuscular preparation. J Neurosci 4:611–626

    Google Scholar 

  • Gozlan H, El Mestikawy S, Pichar L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand 3H-PAT. Nature 305:140–142

    Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    Google Scholar 

  • Hoffman BJ, Karpa MD, Lever JR, Hartig PR (1985) N1-methyl-2-[125I]-LSD ([125I]-MIL), a preferred ligand for serotonin 5HT-2 receptors. Eur J Pharmacol 110:147–148

    Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    Google Scholar 

  • Hokin LE, Hokin MR (1958a) Phosphoinositides and protein secretion in pancreas slices. J Biol Chem 233:805–810

    Google Scholar 

  • Hokin LE, Hokin MR (1958b) Acetylcholine and the exchange of inositol, and phosphate in brain phosphoinositide. J Biol Chem 233:818–821

    Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Characterization of the 5HT-1b recognition site in rat brain: binding studies with (-) [125I]-iodocyanopindolol. Eur J Pharmacol 118:1–12

    Google Scholar 

  • Jafferji SS, Michell RH (1976) Stimulation of phosphatidylinositol turnover by histamine, 5-hydroxytryptamine and adrenaline in the longitudinal smooth muscle of guinea pig ileum. Biochem Pharmacol 25:1429–1430

    Google Scholar 

  • Janowsky A, Labarca R, Paul SM (1984a) Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci 35:1953–1961

    Google Scholar 

  • Janowsky A, Labarca R, Paul SM (1984b) Noradrenegic denervation increases alpha-1 adrenoceptor-mediated inositol-phosphate accumulation in the hippocampus. Eur J Pharmacol 102:193–194

    Google Scholar 

  • Kadan MJ, Krohn AM, Evans MJ, Waltz RL, Hartig PR (1984) Characterization of [125I]-lysergic acid diethylamide receptors in rat frontal cortex. J Neurochem 43:601–606

    Google Scholar 

  • Kakiuchi S, Rall TW (1968) The influence of chemical agents on the accumulation of adenosine 3′,5′-phosphate in slices of rabbit cerebellum. Mol Pharmacol 4:367–378

    Google Scholar 

  • Kendall DA, Nahorski SR (1985) 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther 233:473–479

    Google Scholar 

  • Kendall DA, Brown E, Nahorski SR (1985) Alpha-1-adrenoceptor mediated inositol phospholipid hydrolysis in rat cerebral cortex: Relationship between receptor occupancy and response and effects of denervation. Eur J Pharmacol 114:41–52

    Google Scholar 

  • Kravitz EA, Beltz B, Glusman S, Goy M, Harris-Warrick R, Johnston M, Livingstone M, Schwarz T, Siwiki KK (1985) The well modulated lobster: the roles of serotonin, octopamine, and prolactin in the lobster nervous system. In: Selverston AI (ed) Model neural networks and behavior. Plenum, New York, pp 339–359

    Google Scholar 

  • Lewis GP (1960) The inhibition by morphine of the action of smooth muscle stimulants on the guinea pig intestine. Br J Pharmacol 15:425–431

    Google Scholar 

  • Leysen JE, Laduron PM (1977) A serotonergic component of neuroleptic receptors. Arch Int Pharmacodyn Ther 230:337–339

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1978) Serotonergic component of neuroleptic receptors. Nature 272:168–171

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin, a selective 3H-ligand for serotonin2 receptor binding sites.Mol Pharmacol 21:301–314

    Google Scholar 

  • Leysen JE, Van Gompel P, Gommeren W, Woestenborghs R, Janssen PAJ (1986) Down regulation of serotonin-S2 receptor sites in rat brain by chronic treatment with the serotonin-S2 antagonists: ritanserin and setoperone. Psychopharmacology 88:434–444

    Google Scholar 

  • Litosch K, Fain JN (1985) 5-Methyltryptamine stimulates phospholipase C-mediated breakdown of exogenous phosphoinositides by blowfly salivary gland membranes. J Biol Chem 260:16052–16055

    Google Scholar 

  • Litosch I, Wallis C, Fain JN (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. J Biol Chem 260:5464–5471

    Google Scholar 

  • Litosch I, Calista C, Wallis C, Fain J (1986) 5-Methyltryptamine decreases net accumulation of 32P into the polyphosphoinositides from [32P]-ATP in a cell free system from blowfly salivary glands. J Biol Chem 261:638–643

    Google Scholar 

  • Lubbert H, Snutch TP, Dascal N, Lester HA, Davidson N (1986) The rat brain serotonin receptor functionally expressed in mRNA injected Xenopus oocytes is the 5HT-1c type. Neurosci Abstr 12, part 1:363

    Google Scholar 

  • Lucki I, Nobler MS, Frazer A (1984) Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J Pharmacol Exp Ther 228:133–139

    Google Scholar 

  • MacDermot J, Higashida H, Wilson SP, Matsuzawa H, Minna J, Nirenberg M (1979) Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell hybrids. Proc Natl Acad Sci USA 76:1135–1139

    Google Scholar 

  • Maeda K (1983) Monoaminergic effect on cerebrospinal fluid production. Nihon University Journal of Medicine 25:155–174

    Google Scholar 

  • Mansour TE, Sutherland EW, Rall TW, Bueding E (1960) The effect of serotonin (5-hydroxytryptamine) on the formation of adenosine 3′,5′-phosphate by tissue particles from the liver fluke, Fasciola hepatica. J Biol Chem 235:466–470

    Google Scholar 

  • Marcinkiewicz M, Verge D, Bozlan H, Pichat L, Hamon M (1984) Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291:159–163

    Google Scholar 

  • Martin LL, Sanders-Bush E (1982a) Comparison of the pharmacological characteristics of 5HT1 and 5HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn-Schmiedeberg's Arch Pharmacol 321:165–170

    Google Scholar 

  • Martin LL, Sanders-Bush E (1982b) The serotonin autoreceptor: antagonism by quipazine. Neuropharmacology 21:445–450

    Google Scholar 

  • Masters SB, Quinn MT, Brown JH (1985) Agonist induced desensitization of muscarinic receptor-mediated calcium efflux without concomitant desensitization of phosphoinositide hydrolysis. Mol Pharmacol 27:325–332

    Google Scholar 

  • McCall RB, Aghajanian GK (1979) Serotonergic facilitation of facial motoneuron excitation. Brain Res 169:11–27

    Article  CAS  PubMed  Google Scholar 

  • McComb JG (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383

    Google Scholar 

  • McKenney JD, Glennon RA (1986) TFMPP may produce its stimulus effects via a 5-HT1B mechanism. Pharmacol Biochem Behav 24:43–47

    Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochem Biophys Res Commun 415:81–147

    Google Scholar 

  • Middlemiss DN (1984) 8-Hydroxy-2-(di-n-propylamino) tetralin is devoid of activity at the 5-hydroxytryptamine autoreceptor in rat brain. Implication for the proposed link between the autoreceptor and the [3H]5HT recognition site. Naunyn-Schmiedeberg's Arch Pharmacol 327:18–22

    Google Scholar 

  • Mogilnicka E, Klimek V (1979) Mianserin, danitracen and amitriptyline withdrawal increases the behavioral responses of rats to L-5HTP. Comm J Pharmacol 31:704–705

    Google Scholar 

  • Moskowitz MA, Liebman JF, Reinhard JF Jr, Schlosberg A (1979) Raphe origin of serotonin-containing neurons within choroid plexus of the rat. Brain Res 169:590–594

    Google Scholar 

  • Muller-Schweinitzer E, Engel G (1983) Evidence for mediation by 5-HT2 receptors of 5-hydroxytryptamine-induced contraction of canine basilar artery. Naunyn-Schmiedeberg's Arch Pharmacol 324:287–292

    Google Scholar 

  • Naik DV, Mathew TC (1985) Alterations of the infundibular supraependymal neuronal plexus following the intraventricular administration of 5,7-dihydroxytryptamine in the rat. Neuroendocrinol Lett 7:51–60

    Google Scholar 

  • Nakamura M, Fukushima H (1978) Effects of reserpine, parachlorophenylalanine, 5,6-dihydroxytryptamine and fludiazepam on the head twitches induced by 5-hydroxytryptamine or 5-methoxytryptamine in mice. J Pharm Pharmacol 30:254–256

    Google Scholar 

  • Nakamura S, Moriyasu N (1978) Nerve fibers and nerve endings in the choroid plexus: Electron microscopic study. Brain and Nerve 30:259–266

    Google Scholar 

  • Napoleone P, Sancesario G, Amenta F (1982) Indoleaminergic innervation of rat choroid plexus: a fluorescence histochemical study. Neurosci Lett 34:143–147

    Google Scholar 

  • Nelson DL, Herbert A, Bougoin S, Glowinski J, Hamon M (1978) Characteristics of central 5HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol Pharmacol 14:983–995

    Google Scholar 

  • Nelson DL, Herbet A, Enjalbert A, Bockaert J, Hamon M (1980) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat. I. Kinetic parameters and pharmacological properties. Biochem Pharmacol 29:2445–2453

    Google Scholar 

  • Niemgeers DJE, Colpeart FC, Leysen JE, Awouters F, Janssen PAJ (1983) Mescaline-induced head twitches: An in vivo method to evaluate serotonin-S2 antagonists. Drug Dev Res 3:123–135

    Google Scholar 

  • Norman AB, Battaglia G, Greese I (1985) [3H]WB4101 labels the 5-HT1a serotonin receptor subtype in rat brain. Mol Pharmacol 28:487–494

    Google Scholar 

  • Ortmann R, Bischoff S, Radeke E, Buech O, Delini-Stula A (1982) Correlations between different measures of antiserotonin activity of drugs. Naunyn-Schmiedeberg's Arch Pharmacol 321:265–270

    Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligand to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106:539–546

    Google Scholar 

  • Pedigo NW, Yamamura HI, Nelson DL (1981) Discrimination of multiple 3-H-5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226

    Google Scholar 

  • Peroutka SJ, Snyder SH (1981a) Long-term antidepressant treatment decreases [3H]-spiroperidol-labeled serotonin receptor binding. Science 210:88–90

    Google Scholar 

  • Peroutka SJ, Snyder SH (1981b) [3H]Mianserin: differential labeling of serotonin2 and histamine1 receptors in rat brain. J Pharmacol Exp Ther 216:142–148

    Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1979) Serotonin receptor binding sites affected differentially by guanine nucleotides. Mol Pharmacol 16:700–708

    Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1981) Two distinct central serotonin receptors with different physiological functions. Science 212:827–829

    Google Scholar 

  • Peroutka SJ, Noguchi M, Tolner DJ, Allen GS (1983) Serotonin-induced contraction of canine basilar artery: mediation by 5-HT1 receptors. Brain Res 259:327–330

    Google Scholar 

  • Peroutka SJ, Huang S, Allen GS (1986) Canine basilar artery contractions mediated by 5-hydroxytryptamine 1A receptors. J Pharmacol Exp Ther 237:901–906

    Google Scholar 

  • Pollock JD, Bernier L, Comardo JS (1985) Serotonin and cyclic adenosine 3′:5′-monophosphate modulate the potassium current in certain sensory neurons in the pleural ganglion of Aplysia. J Neurosci 5:1862–1871

    Google Scholar 

  • Quik M, Azmita E (1983) Selective destruction of the serotonergic fibers of the fornix-fimbria and cingulum bundle increases 5HT-1 but not 5HT-2 receptors in rat midbrain. Eur J Pharmacol 90:377–384

    Google Scholar 

  • Raiteri M, Maura G, Bonnanno G, Pittaluga A (1986) Differential pharmacology and function of two 5-HT1 receptors modulating transmitter release in rat cerebellum. J Pharmacol Exp Ther 237:644–648

    Google Scholar 

  • Ransom RW, Asarch KB, Shih JC (1985) A trifluoromethylphenyl piperazine derivative with high affinity for 5-hydroxytryptamine-1a sites in rat brain. J Neurochem 44:875–880

    Google Scholar 

  • Richards JG, Guggenheim R (1982) Serotonergic axons in the brain: a birds eye view. Trends Neurosci 5:4–5

    Google Scholar 

  • Rittenhouse SE (1984) Activation of human platelet phospholipase C by ionophore A231897 is totally dependent upon cyclo-oxygenase products and ADP. Biochem J 222:103–110

    Google Scholar 

  • Rocha e Silva M, Valle JR, Picarelli ZP (1953) A pharmacological analysis of the mode of action of serotonin (5-hydroxytryptamine) upon the guinea pig ileum. Br J Pharmacol 8:378–388

    Google Scholar 

  • Roth BL, Nakaki T, Chuang DM, Costa E (1984) Aortic recognition sites for serotonin are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology 23:1223–1225

    Google Scholar 

  • Roth BL, Nakaki T, Chuang D, Costa E (1986) 5-Hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J Pharmacol Exp Ther 238:480–485

    Google Scholar 

  • Samanin R, Mennini J, Ferraris A, Bendotti C, Borsini R (1980) Hyper- and hyposensitivity of central serotonin receptors: [3H]-serotonin binding and functional studies in the rat. Brain Res 189:449–457

    Google Scholar 

  • Savage DD, Mendels J, Frazer A (1980a) Decrease in [3H]-serotonin binding in rat brain produced by the repeated administration of either monoamine oxidase inhibitors or centrally acting serotonin agonists. Neuropharmacology 19:1063–1070

    Google Scholar 

  • Savage DD, Mendels J, Frazer A (1980b) Monoamine oxidase inhibitors and serotonin uptake inhibitors: differential effects on [3H]-serotonin binding sites in rat brain. J Pharmacol Exp Ther 212:259–263

    Google Scholar 

  • Schachter M, Godfrey PP, Minchin MCW, McClue SJ, Young MM (1985) Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets. Life Sci 37:1641–1647

    Google Scholar 

  • Seeman P, Westman K, Coscina D, Warsh JJ (1980) Serotonin receptors in hippocampus and frontal cortex. Eur J Pharmacol 66:179–191

    Google Scholar 

  • Shenker A, Maayani S, Weinstein H, Green JP (1983) Enhanced serotonin-stimulated adenylate cyclase activity in membranes from adult guinea pig hippocampus. Life Sci 32:2335–2342

    Google Scholar 

  • Shenker A, Maayani S, Weinstein H, Green JP (1985) Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur J Pharmacol 109:427–429

    Google Scholar 

  • Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single potassium channels in Aplysia sensory neurones. Nature (London) 299:413

    Google Scholar 

  • Sprouse JS, Aghajanian GK (1985) Serotonergic dorsal raphe neurons: Electrophysiological responses in rats to 5-HT-1a and 5-HT-1b receptor subtype ligands. Soc Neurosci Abstr 11:47

    Google Scholar 

  • Stoltz JF, Marsden CA, Middlemiss DN (1983) Effect of chronic antidepressant treatment and subsequent withdrawal on [3H]-5-hydroxytryptamine and [3H]-spiperone binding in rat frontal cortex and serotonin mediated behavior. Psychopharmacology 80:150–155

    Google Scholar 

  • Stone DB, Mansour TE (1967) Phosphofructokinase from the liver fluke Hasciola hepatica. 1. Activation by adenosine-3′,5′-phosphate and by serotonin. Mol Pharmacol 3:161

    Google Scholar 

  • Sweatt JD, Blair IA, Cragoe EJ, Limbird LE (1986) Inhibitors of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J Biol Chem 261:8660–8666

    Google Scholar 

  • Tricklebank MD, Forler C, Fozard JR (1985) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioral response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106:271–282

    Google Scholar 

  • Von Hungen K, Roberts S, Hill DF (1974) Developmental and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain. J Neurochem 22:811–819

    Google Scholar 

  • Von Hungen K, Roberts S, Hill DF (1975) Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Res 84:257–267

    Google Scholar 

  • Watson SP, Wolf M, Lapetina EG (1985) The formation of [3H]-inositol phosphates in human platelets by palmitoyl lysophosphatidic acid is blocked by indomethacin. Biochem Biophys Res Commun 132:555–562

    Google Scholar 

  • Weiss S, Sebben M, Kemp DE, Bockaert J (1986) Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur J Pharmacol 120:227–230

    Google Scholar 

  • Wilson DB, Connolly TM, Bross TE, Majerus PW, Sherman ANT, Rubin LJ, Brown JE (1985) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. J Biol Chem 260:13496–13501

    Google Scholar 

  • Wong DT, Bymaster FP (1981) Subsensitivity of serotonin receptors after long-term treatment of rats with fluoxetine. Res Commun Chem Pathol Pharmacol 32:41–51

    Google Scholar 

  • Yagaloff KA, Hartig PR (1985) 125I-Lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells. J Neurosci 5:3178–3183

    Google Scholar 

  • Yagaloff KA, Hartig PR (1986) Solubilization and characterization of the serotonin 5-HT1c site from pig choroid plexus. Mol Pharmacol 29:120–125

    Google Scholar 

  • Yamamoto T, Ueki S (1981) The role of central serotonergic mechanisms in head-twitch and backward locomotion induced by hallucinogenic drugs. Pharmacol Biochem Behav 14:89–95

    Google Scholar 

  • Zatz M (1985) Denervation supersensitivity of the rat pineal to norepinephrine-stimulated [3H]-inositide turnover revealed by lithium and a convenient procedure. J Neurochem 45:95–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conn, P.J., Sanders-Bush, E. Central serotonin receptors: effector systems, physiological roles and regulation. Psychopharmacology 92, 267–277 (1987). https://doi.org/10.1007/BF00210830

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210830

Key words

Navigation