Skip to main content
Log in

Function of spiral grain in trees

  • Review Article
  • Published:
Trees Aims and scope Submit manuscript

Summary

Through spiral grain, conduits for sap lead from each root to all branches. This uniform distribution of sap is indicated by the paths of vessels and tracheids, and has been proven experimentally by means of dyed sap injected into the base of stems or taken up by roots. Trees receiving water only from roots at one side of the root collar nevertheless stay green and continue growing. Spiral grain in bark distributes food from each branch to other flanks of the stem and to most roots. Experimental interruptions of the sap and food conduits caused the cambial zone to reorient new conduit cells in new directions, bypassing the interruption. In particular, spiral grooves cut into the stem surface caused spiral grain. The new cells reorient through division and growth. Although spiral grain is largely under genetic control, trees appear to have a spiral grain especially where needed for distribution of water when root spheres are dry at one side. Compared with straight-grained trees, spiral-grained stems and branches bend and twist more when exposed to strong wind, in this way offering less wind resistance and being less likely to break. Through the bending and twisting, snow slides down from branches rather than breaking them, but the main function of spiral grain is the uniform distribution of supplies from each root to all branches, and from each branch to many roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni R, Peterson CA (1990) The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182: 583–590

    Google Scholar 

  • Archer RR (1987) Growth stresses and strains in trees. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Banks CH (1953) Spiral grain and its effect on the strength of South African grown pines. J S Afr For Assoc 23: 45–50

    Google Scholar 

  • Banks CH (1969) Spiral grain and its effect on the quality of South African timber. Bosbou For 10: 27–33

    Google Scholar 

  • Baumert P (1925) Knick- und Drehwuchs zum Zwecke der Zerlegung der Windkraft in Teilkräfte. Mitt Dtsch Dendrol Ges 35: 132–138

    Google Scholar 

  • Birot Y, Arbez M, Azoeuf P, Hoslin R (1979) Variabilité phénotypique de l'angle du fil du bois en fonction de la hauteur chez le Pin laricio et le Douglas. Ann Sci For 36: 165–173

    Google Scholar 

  • Bormann FH (1966) The structure, function, and ecological significance of root grafts in Pinus strobus L. Ecol Monogr 36: 1–26

    Google Scholar 

  • Braun A (1854) Über den schiefen Verlauf der Holzfasern und die dadurch bedingte Drehung der Bäume. Königlich Preussische Akad Wiss, Berlin, Monatsber 1854: 432–484

    Google Scholar 

  • Brown CL, Sax K (1962) The influence of pressure on the differentiation of secondary tissues. Am J Bot 49: 683–691

    Google Scholar 

  • Burger H (1946) Der Drehwuchs bei Birn- und Apfelbäumen. Schweiz Z Forstwes 97: 119–125

    Google Scholar 

  • Cahn AR (1931) Twisted trees. Science 73: 561

    Google Scholar 

  • Cown DJ, McConchie DL, Young GD (1983) Wood properties of Pinus caribaea var. hondurensis grown in Fiji. N Z For Serv Bull 17

  • Collins JF (1930) On changing the direction of sap conducting tissues. J N Engl Bot Club 32: 145–146

    Google Scholar 

  • Elliott GK (1958) Spiral grain in second-growth Douglas-fir and western hemlock. For Prod J 8: 205–211

    Google Scholar 

  • Elliott GK (1967) Some problems of spiral grain — with special reference to conifers. Proc 14th Congr IUFRO, Munich 1967 Pt IX, Sect 22/41, pp413–435

  • Evert RF (1961) Some aspects of cambial development in Pyrus communis. Am J Bot 48: 479–488

    Google Scholar 

  • Evert RF (1990) Dicotyledons. In: Behnke HD, Sjolund RD (eds) Sieve elements — comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 103–137

    Google Scholar 

  • Evert RF, Kozlowski TT (1967) Effect of isolation of bark on cambial activity and development of xylem and phloem in trembling aspen. Am J Bot 54: 1045–1054

    Google Scholar 

  • Fielding JM (1967) Spiral grain in Pinus radiata plantations in the Australian Capital Territory. Leafl For Timb Bur Aust 103

  • Greenidge KNH (1958) Rates and patterns of moisture movement in tree. In: Thimann KV, Critchfield WB, Zimmermann MH (eds) The physiology of forest trees. Ronald Press, New York, pp 19–41

    Google Scholar 

  • Harris JM (1967) The causes of spiral grain in the corewood of radiata pine. Proc 14th Congr IUFRO, Munich 1967 Pt IX Sect 22/41, pp 363–383

  • Harris JM (1971) On the causes of spiral grain in the corewood of Pinus radiata D. Don. 15th Congr IUFRO, Gainesville, Sect 41, pp 1–3

  • Harris JM (1989) Spiral grain and wave phenomena in wood formation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hartig R (1895) Über den Drehwuchs der Kiefer. Forstl Naturwiss Z 4: 313–326

    CAS  PubMed  Google Scholar 

  • Hejnowicz Z (1980) Tensional stress in the cambium and its developmental significance. Am J Bot 67: 1–5

    Google Scholar 

  • Hejnowicz Z, Zagorska-Marek B (1974) Mechanism of changes in grain inclination in wood produced by storeyed cambium. Acta Soc Bot Pol 43: 381–398

    Google Scholar 

  • Howard NF (1932) Twisted trees. Science 75: 132–133

    Google Scholar 

  • Huber B (1958) Anatomical and physiological investigations on food translocation in trees. In: Thimann KV, Critchfield WB, Zimmermann MH (eds) The physiology of forest trees. Ronald Press, New York, pp 367–379

    Google Scholar 

  • Jacot AP (1931) Tree twist. Science 74: 567

    Google Scholar 

  • Kaasa J (1976) Spiral grain in Picea abies and Pinus sylvestris. Tidsskr Skogbruk 84: 299–309

    Google Scholar 

  • Keller R, Azoeuf P, Hoslin R (1974) Détermination de l'angle de la fibre torse d'arbres sur pied à l'aide d'un traceur radioactif. Ann Sci For 31: 161–169

    Google Scholar 

  • Kennedy RW, Elliott GK (1957) Spiral grain in red alder. For Chron 33: 238–251

    Google Scholar 

  • Kirschner H, Sachs T, Fahn A (1971) Secondary xylem reorientation as a special case of vascular tissue differentiation. Isr J Bot 20: 184–198

    Google Scholar 

  • Knigge W, Schulz H (1959) Methodische Untersuchungen über die Möglichkeit der Drehwuchsfeststellung in verschiedenen Alterszonen von Laubhölzern. Holz Roh Werkst 17: 341–351

    Google Scholar 

  • Knorr F (1932) What causes twisted trees? J Hered 23: 49–52

    Google Scholar 

  • Koehler A (1931) More about twisted grain in trees. Science 73: 477

    Google Scholar 

  • Kozlowski TT (1961) The movement of water in trees. For Sci 7: 177–192

    Google Scholar 

  • Kozlowski TT, Winget CH (1963) Patterns of water movement in forest trees. Bot Gaz 124: 301–311

    Article  Google Scholar 

  • Kozlowski TT, Hughes JF, Leyton L (1967) Movement of injected dyes in gymnosperm stems in relation to tracheid alignment. Forestry 40: 207–219

    Google Scholar 

  • Krahl-Urban J (1953) Hinweise auf individuale Erbanlagen bei Eichen und Buchen. Forstgenetik Forstpflanzenzüchtung 2: 51–59

    Google Scholar 

  • Krahl-Urban J (1967) Über den Drehwuchs bei Buchen. Proc 14th Congr IUFRO, Munich 1967, Pt IX, Sect 22/41, pp 384–397

  • Kramer PJ, Kozlowski TT (1979) Physiology of wood plants. Academic Press, Orlando

    Google Scholar 

  • Krempl H (1970) Untersuchungen über den Drehwuchs bei Fichte. MittForstl Bundes-Versuchsanst Wien 89

  • Kubler H (1987) Growth stresses in trees and related wood properties. For Abstr 48: 131–189

    Google Scholar 

  • Kubler H (1988) Silvicultural control of mechanical stresses in trees. Can J For Res 18: 1215–1225

    Google Scholar 

  • Leopold AC, Kriedemann PE (1975) Plant growth and development, 2nd edn. McGraw-Hill, New York pp 195–220

    Google Scholar 

  • Liese W, Ammer U (1962) Anatomische Untersuchungen an extrem drehwüchsigem Kiefernholz. Holz Roh Werkst 20: 339–346

    Google Scholar 

  • Lowery DP (1965) Spiral grain patterns in Douglas-fir. Proc Mont Acad Sci 25: 62–67

    Google Scholar 

  • Lowery DP (1967) Spiral grain in individual growth rings. J For 65: 120–121

    Google Scholar 

  • Lowery DP, Erickson ECO (1967) The effect of spiral grain on pole twist and bending strength. US For Serv Res Pap Intermt For Range Exp Sta INT-35, Missoula, Mont

  • MacDaniels LH, Curtis OF (1930) The effect of spiral ringing on solute translocation and the structure of the regenerated tissues of the apple. Cornell Univ Agric Exp Stn, Mem 133: 3–31

    Google Scholar 

  • Mayer-Wegelin H (1956) Die biologische, technologische und forstliche Bedeutung des Drehwuchses der Waldbäume. Forstarchiv 27: 265–271

    Google Scholar 

  • Meyer KA (1949) Sprachliche und literarische Bemerkungen zum Problem ‚Drehwuchs’. Mitt Schweiz Anst Forstl Versuchswes 26: 331–347

    Google Scholar 

  • Misra P (1943) Correlation between excentricity and spiral grain in the wood of Pinus longifolia. Forestry 17: 67–80

    Google Scholar 

  • Neeff F (1914) Über Zellumlagerung. Z Bot 6: 465–547

    Google Scholar 

  • Neeff F (1922) Über polares Wachstum von Pflanzenzellen. Jahrb Wiss Bot 61: 205–283

    Google Scholar 

  • Nicholls JWP (1965) The possible causes of spiral grain. Proc Meet Sect 41 IUFRO, Melbourne, vol. 1, pp 1–7

    Google Scholar 

  • Nicholls JWP, Brown AG (1974) The relationship between ring width and wood characteristics in double-stemmed trees of radiata pine. N Z J For Sci 4: 105–111

    Google Scholar 

  • Northcott PL (1965) The effects of spiral grain on the usefulness of wood. Proc Meet Sect 41 IUFRO, Melbourne, vol. 1, pp 1–5

    Google Scholar 

  • Noskowiak AF (1963) Spiral grain in trees ... a review. For Prod J 13: 266–275

    Google Scholar 

  • Paul BH (1956) Changes in spiral grain direction in Ponderosa Pine. Rep US For Prod Lab 2058, Madison, Wis

  • Pawsey CK (1965) A study of spiral grain in clones of Pinus radiata. Aust For 29: 89–95

    Google Scholar 

  • Pawsey CK, Brown AG (1970) Variation in properties of breast height wood samples of trees of Pinus radiata. Aust For Res 4: 15–25

    Google Scholar 

  • Preston RD (1949) Spiral structure and spiral growth. The development of spiral grain in conifers. Forestry 23: 48–55

    Google Scholar 

  • Preston RD (1952) Movement of water in higher plants. In: Frey-Wyssling A (ed) Deformation and flow in biological systems. North Holland, Amsterdam, pp 257–321

    Google Scholar 

  • Pyszyński W (1977) Mechanism of formation of spiral grain in Aesculus stems: dissymmetry of deformation of stems caused by cyclic torsion. Acta Soc Bot Pol 46: 501–522

    Google Scholar 

  • Pyszyński W (1980) Pattern of ray arrangement on cross section of bark of Aesculus. Acta Soc Bot Pol 49: 415–422

    Google Scholar 

  • Quirk JT, Smith DM, Freese F (1975) Effect of mechanical stress on growth and anatomical structure of red pine (Pinus resinosa Ait.): torque stress. Can J For Res 5: 691–699

    Google Scholar 

  • Rault JP, Marsh EK (1952) The incidence and sylvicultural implications of spiral grain in Pinus longifolia Roxb. in South Africa and its effect on converted umber. Proc Commonw For Conf Can, For Prod Inst, Pretoria

  • Roberts LW, Gahan PB, Aloni R (1988) Vascular differentiation and plant growth regulators. Springer, Berlin Heidelberg New York, p VII

    Google Scholar 

  • Rudinsky JA, Vité JP (1959) Certain ecological and phylogenetic aspects of the pattern of water conduction in conifers. For Sci 5: 259–266

    Google Scholar 

  • Sachsse H (1965) The effect of the rate of growth on the occurrence of spiral grain. Proc Meet Sect 41 IUFRO, Melbourne, vol. 1, pp 7–15

    Google Scholar 

  • Thair BW, Sleeves TA (1976) Response of the vascular cambium to reorientation in patch grafts. Can J Bot 54: 361–373

    Google Scholar 

  • Thunell B (1951) Über die Drehwüchsigkeit. Holz Roh Werkst 9: 293–297

    Google Scholar 

  • Trendelenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff. Hanser, Munich

    Google Scholar 

  • Ullrich H (1951) Über die Prinzipien pflanzlicher Festigkeitsverhältnisse, insbesondere bei Holzpflanzen. Ber Dtsch Bot Ges 64: 275–283

    Google Scholar 

  • US For Prod Lab (1987) Wood handbook: wood as an engineering material. Agric Handb 72. GPO, Washington, D. C., p 4–29

    Google Scholar 

  • Venkataramanan SV (1967) Spiral grain in chir (Pinus roxburghii Sargent). Proc 14th Congr IUFRO, Munich 1967, Pt IX Sect 22/41, pp 484–497

  • Vité JP (1958) Über die transpirationsphysiologische Bedeutung des Drehwuchses bei Nadelhölzern. Forstwiss Centralbl 77: 193–203

    CAS  PubMed  Google Scholar 

  • Vité JP (1959) Observations on the movement of injected dyes in Pinus ponderosa and Abies concolor. Contrib Boyce Thompson Inst 20: 7–26

    Google Scholar 

  • Vité JP (1967) Water conduction and spiral grain. Proc 14th Congr IUFRO, Munich 1967, Pt IX Sect 22/41, pp 338–351

  • Vité JP, Rudinsky JA (1959) The water conducting systems in conifers and their importance in the distribution of trunk-injected chemicals. Contrib Boyce Thompson Inst 20: 27–38

    Google Scholar 

  • Webb CD (1969) Variation of interlocked grain in sweetgum. For Prod J 19 (8) 45–48

    Google Scholar 

  • Wedell E (1961) Influence of interlocked grain on the bending strength of timber, with particular reference to Utile and Greenheart. J Inst Wood Sci 7: 56–72

    Google Scholar 

  • Wellner CA, Lowery DP (1967) Spiral-grain — a cause of pole twisting. US For Serv Res Pap Intermt For Range Exp Sta INT-38, Missoula, Mont

  • Wentworth CK (1931) Twist in the grain of coniferous trees. Science 73: 192

    Google Scholar 

  • Worall JG (1980) The impact of environment on cambial growth. In: Control of shoot growth in forest trees. IUFRO Workshop, Fredericton, Canada, pp 127–142

    Google Scholar 

  • Yeager WC (1931) Regarding twist in conifers. Science 73: 392–393

    Google Scholar 

  • Ziegler H (1964) Storage, mobilization and distribution of reserve material in trees. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, London, pp 303–320

    Google Scholar 

  • Ziegler H (1975) Nature of transported substances. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, ns, vol. 1 Springer, Berlin Heidelberg New York, pp 59–100

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees — structure and function. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubler, H. Function of spiral grain in trees. Trees 5, 125–135 (1991). https://doi.org/10.1007/BF00204333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204333

Key words

Navigation