Skip to main content
Log in

Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The total nerve cell numbers in the right and in the left human entorhinal areas have been calculated by volume estimations with the Cavalieri principle and by cell density determinations with the optical disector. Thick gallocyanin-stained serial frozen sections through the parahippocampal gyrus of 22 human subjects (10 female, 12 male) ranging from 18 to 86 years were analysed. The laminar composition of gallocyanin (Nissl)-stained sections could easily be compared with Braak's (1972, 1980) pigmentoarchitectonic study, and Braak's nomenclature of the entorhinal laminas was adopted. Cellsparse laminae dissecantes can more clearly be distinguished in Nissl than in aldehydefuchsin preparations. These cell-poor dissecantes, lamina dissecans externa (dis-ext), lamina dissecans 1 (dis-1) and lamina dissecans 2 (dis-2), were excluded from nerve cell number determinations. An exact delineation of the entorhinal area is indispensable for any kind of quantitative investigation. We have defined the entorhinal area by the presence of pre-alpha cell clusters and the deeper layers of lamina principalis externa (pre-beta and gamma) separated from lamina principalis interna (pri) by lamina dissecans 1 (dis-1). The human entorhinal area is quantitatively characterized by a left-sided (asymmetric) higher pre-alpha cell number and an age-related nerve cell loss in pre as well as pri layers. At variance with other CNS cortical and subcortical structures, the neuronal number of the entorhinal area appears to decrease continuously from the earliest stages analysed, although a secular trend has to be considered. The asymmetry in pre-alpha cell number is discussed in the context of higher human mental capabilities, especially language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral DG, Insausti R, Cowan WM (1984) The commissural connections of the monkey hippocampal formation. J Comp Neurol 224:307–336

    Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurol 264:326–355

    Google Scholar 

  • Arnold SE, Hyman BT, Hoesen GW van, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    Google Scholar 

  • Bauchot R (1967) Les modifications du poid encéphalique au cours de la fixation. J Hirnforsch 6:253–283

    Google Scholar 

  • Bauer M, Heinsen H, Berger K (1991) Nerve cell loss in allo- and neocortical regions in two cases of Huntington's disease. Clin Neuropathol 10:27

    Google Scholar 

  • Beall MJ, Lewis DA (1992) Heterogeneity of layer II neurons in human entorhinal cortex. J Comp Neurol 321:241–266

    Google Scholar 

  • Beck E (1940) Morphogenie der Hirnrinde. In: Bumke O, Foerster O, Rüdin E, Spatz H (eds) Monographien aus dem Gesamtgebiete der Neurologic und Psychiatrie. Springer, Berlin, pp 1–167

    Google Scholar 

  • Beckmann H, Heinsen H (1989) Letter to the editor. Morphometry of the entorhinal cortex. Biol Psychiatry 25:977–978

    Google Scholar 

  • Beckmann H, Jakob H (1991) Prenatal disturbances of nerve cell migration in the entorhinal region: a common vulnerability factor in functional psychoses? J Neural Transm Gen Sect 84:155–164

    Google Scholar 

  • Blackstad TW (1956) Commissural connections of the hippocampal region in the rat. With special reference to their mode of termination. J Comp Neurol 105:417–537

    Google Scholar 

  • Bogerts B, Falkai P (1989) Letters to the editor. Response. Biol Psychiatry 25:978–979

    Google Scholar 

  • Braak H (1972) Zur Pigmentarchitektonik der Groβhirnrinde des Menschen. I. Regio entorhinalis. Z Zellforsch Mikrosk Anat 127:407–438

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V (ed) Studies on brain function. Springer, Berlin Heidelberg New York, pp 1–147

    Google Scholar 

  • Braak H, Braak E (1990) Cognitive impairment in Parkinson's disease: amyloid plaques, neurofibrillary tangles, and neuropil threads in the cerebral cortex. J Neural Transm Park Dis Dement Sect 2:45–57

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimerrelated changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1992 a) Layer-specific allocortical destruction in Huntington's chorea (abstract). Clin Neuropathol 11:278

    Google Scholar 

  • Braak H, Braak E (1992 b) Allocortical involvement in Huntington's disease. Neuropathol Appl Neurobiol 18:539–547

    Google Scholar 

  • Braak H, Braak E (1993 a) Whole mount preparations displaying the progression of entorhinal neurofibrillary changes during initial stages of Alzheimer's disease (abstract). Clin Neuropathol 5:239

    Google Scholar 

  • Braak H, Braak E (1993 b) Progression of entorhinal neurofibrillary changes during initial stages of Alzheimer's disease as seen in flattened whole mount preparations (abstract). Soc Neurosci Abstr 19:1475

    Google Scholar 

  • Braak H, Braak E, Strenge H (1976) Gehören die Inselneurone der Regio entorhinalis zur Klasse der Pyramiden- oder der Sternzellen? Z Mikrosk Anat Forsch 90:1017–1031

    Google Scholar 

  • Braendgaard H, Gundersen HJG (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18:39–78

    Google Scholar 

  • Braendgaard H, Evans SM, Howard CV, Gundersen HJ (1990) The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. J Microsc 157:285–304

    Google Scholar 

  • Brockhaus H (1940) Die Cyto- und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. J Psychol Neurol 49:249–348

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Groβhirnrinde. Barth, Leipzig

    Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–556

    Google Scholar 

  • Brody H (1976) An examination of cerebral cortex and brainstem aging. In: Terry RD, Gershon S (eds) Neurobiology of aging (Aging, vol 3). Raven Press, New York, pp 177–181

    Google Scholar 

  • Cajal SR (1972) Histologie du système nerveux de l'homme et des vertébrés. II. Consejo Superior de Investigaciones Cientificas, Madrid, pp 1–993

    Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Left-right asymmetries of the temporal speech areas of the human fetus. Arch Neurol 34:346–348

    Google Scholar 

  • Cruz-Orive LM (1983) Distribution-free estimation of sphere size distributions from slabs showing overprojection and truncation, with a review of previous methods. J Microsc 131:265–290

    Google Scholar 

  • Dekaban AS, Sadowsky D (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4:345–356

    Google Scholar 

  • Drüge H, Heinsen H, Heinsen YL (1986) Quantitative studies in ageing Chbb:THOM(Wistar) rats. II. Neuron numbers in lobules I, VIb + c and X. In: Kretschmann HJ (ed) Brain growth (Bibliotheca Anatomica, vol 28). Karger, Basel, pp 121–137

    Google Scholar 

  • Duvernoy HM (1988) The human hippocampus. An atlas of applied anatomy. Bergmann, München, pp 1–166

    Google Scholar 

  • Economo C von (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London, pp 1–186

    Google Scholar 

  • Economo C von, Horn C (1930) Windungsrelief, Maβpe und indenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede Z Neurol Psychiatric 130:678–757

    Google Scholar 

  • Eggers R, Haug H, Fischer D (1984) Preliminary report on macroscopic age changes in the human prosencephalon. A stereologic investigation. J Hirnforsch 25:129–139

    Google Scholar 

  • Eidelberg D, Galaburda AM (1982) Symmetry and asymmetry in the human posterior thalamus. Arch Neurol 39:325–332

    Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988) Limbic pathology in schizophrenia: the entorhinal region — morphometric study. Biol Psychiatry 24:515–520

    Google Scholar 

  • Filimonoff IN (1947) A rational subdivision of the cerebral cortex. Arch Neurol Psychiatry 58:296–311

    Google Scholar 

  • Flood DG, Coleman PD (1987) Neuron numbers and sizes in aging brain: comparison of human, monkey, and rodent data. Neurobiol Aging 9:453–463

    Google Scholar 

  • Galaburda AM (1980) La région de Broca: observations anatomiques faites un siècle après la mort de son découvreur. Rev Neurol 136:609–616

    Google Scholar 

  • Galaburda AM, Sanides F, Geschwind N (1978) Human brain: cytoarchitectonic left-right asymmetries in the temporal speech area. Arch Neurol 35:812–817

    Google Scholar 

  • Galaburda AM, Corsiglia J, Rosen GD, Sherman GF (1987) Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia 25:853–868

    Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161:186–187

    Google Scholar 

  • Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones. In memory of William R. Thompson. J Microsc 143:3–45

    Google Scholar 

  • Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  Google Scholar 

  • Haug H (1984) Der Einfluß der säkularen Acceleration auf das Hirngewicht des Menschen und dessen Änderung während der Alterung. Gegenb Morphol J 130:481–500

    Google Scholar 

  • Haug H (1985) Are neurons of the human cerebral cortex really lost during aging? A morphometric examination. In: Traber J, Gispen WH (eds) Senile dementia of the Alzheimer type. Springer, Berlin Heidelberg New York, pp 150–163

    Google Scholar 

  • Haug H, Barmwater U, Eggers R, Fischer D, Kühl S, Sass N-L (1983) Anatomical changes in aging brain: morphometric analysis of the human prosencephalon. In: Cervós-Navarro J, Sarkander H-I (eds) Brain aging: neuropathology and neuropharmacology (Aging, vol 21). Raven Press, New York, pp 1–12

    Google Scholar 

  • Heckers S, Heinsen H, Heinsen Y, Beckmann H (1990) Morphometry of the parahippocampal gyrus in schizophrenics and controls. Some anatomical considerations. J Neural Transm Gen Sect 80:151–155

    Google Scholar 

  • Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173

    Google Scholar 

  • Heinsen H, Beckmann H, Heinsen YL, Gallyas F, Haas S, Scharff G (1990) Laminar neuropathology in Alzheimer's disease by a modified Gallyas impregnation. Psychiatr Res 29:463–465

    Google Scholar 

  • Heinsen H, Bauer M, Ulmar G, Gangnus D, Jungkunz G (1992) The entorhinal region in Huntington's disease: a cytoarchitectonic and quantitative investigation in five cases (abstract). Clin Neuropathol 11:226

    Google Scholar 

  • Hevner RF, Wong-Riley MTT (1992) Entorhinal cortex of the human, monkey, and rat: metabolic map as revealed by cytochrome oxidase. J Comp Neurol 326:451–469

    Google Scholar 

  • Hirano A, Zimmerman HM (1962) Alzheimer's neurofibrillary changes. A topographic study. Arch Neurol 7:227–242

    CAS  PubMed  Google Scholar 

  • Ho K-C, Roessmann U, Straumfjord JV, Monroe G (1980a) Analysis of brain weight. I. Adult brain weight in relation to sex, race, and age. Arch Pathol Lab Med 104:635–639

    CAS  PubMed  Google Scholar 

  • Ho K-C, Roessmann U, Straumfjord JV, Monroe G (1980b) Analysis of brain weight. II. Adult brain weight in relation to body height, weight, and surface area. Arch Pathol Lab Med 104:640–645

    CAS  PubMed  Google Scholar 

  • Ho KC, Gwozdz JT, Hause LL, Antuono PG (1992) Correlation of neuronal cell body size in motor cortex and hippocampus with body height, body weight, and axonal length. Int J Neurosci 65:147–153

    Google Scholar 

  • Hoesen GW van (1982) The parahippocampal gyrus — new observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Google Scholar 

  • Hoesen GW van, Pandya DN (1975a) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24

    Google Scholar 

  • Hoesen GW van, Pandya DN (1975b) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39–59

    Google Scholar 

  • Hoesen GW van, Pandya DN, Butters N (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95:25–38

    Google Scholar 

  • Hooper MW, Vogel S (1976) The limbic system in Alzheimer's disease. Am J Pathol 85:1–20

    Google Scholar 

  • Hyman BT, Hoesen GW van, Damasio AR, Barnes CL (1984) Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Google Scholar 

  • Hyman BT, Hoesen GW van, Damasio AR (1990) Memory-related neural systems in Alzheimer's disease: an anatomic study. Neurology 40:1721–1730

    Google Scholar 

  • Jakob H (1979) Die Picksche Krankheit. Eine neuropathologischanatomisch-klinische Studie. In: Hippius H, Janzarik W, Müller C (eds) Monographien aus dem Gesamtgebiete der Psychiatrie. Psychiatry Series. Springer, Berlin Heidelberg New York, pp 1–110

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    Google Scholar 

  • Kemper TL (1978) Senile dementia: a focal disease of the temporal lobe. In: Nandy K (ed) Senile dementia. A biomedical approach. Elsevier/North Holland, Amsterdam New York, pp 5–113

    Google Scholar 

  • Köhler C (1988) Intrinsic connections of the retrohippocampal region in the rat brain. III. The lateral entorhinal area. J Comp Neurol 271:208–228

    Google Scholar 

  • Konigsmark BW, Murphy EA (1970) Neuronal populations in the human brain. Nature 228:1335–1336

    Google Scholar 

  • Konigsmark BW, Murphy EA (1972) Volume of the ventral cochlear nucleus in man: its relationship to neuronal population and age. J Neuropathol Exp Neurol 31:304–316

    Google Scholar 

  • Kopp N, Michel F, Carrier H, Biron A, Duvillard P (1977) Étude de certaines asymétries hémispherique du cerveau humain. J Neurol Sci 34:349–363

    Google Scholar 

  • Kretschmann HJ, Schleicher A, Wingert F, Zilles K, Loeblich HJ (1979) Human brain growth in the 19th and 20th century. J Neurol Sci 40:169–188

    Google Scholar 

  • Kretschmann HJ, Kammradt G, Krauthausen I, Sauer B, Wingert F (1986) Brain growth in man. In: Kretschmann HJ (ed) Brain growth. (Bibliotheca Anatomica, vol 28) Karger, Basel, pp 1–26

    Google Scholar 

  • Krieg WJS (1946) Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J Comp Neurol 84:277–323

    Google Scholar 

  • Lorente de Nò R (1933) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438

    Google Scholar 

  • McLardy T (1970) Memory function in hippocampal gyri but not in hippocampi. Int J Neurosci 1:113–118

    Google Scholar 

  • Miller AKH, Corsellis JAN (1977) Evidence for a secular increase in human brain weight during the past century. Ann Hum Biol 4:253–257

    CAS  PubMed  Google Scholar 

  • Miller AKH, Alston RL, Corsellis JAN (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurement with an image analyser. Neuropathol Appl Neurobiol 6:119–132

    CAS  PubMed  Google Scholar 

  • Miller LA, Munoz DG, Finmore M (1993) Hippocampal sclerosis and human memory. Arch Neurol 50:391–394

    Google Scholar 

  • Pakkenberg B, Evans SM, Moller A, Braendgaard H, Gundersen HJG (1989) Total number of neurons in human neocortex related to age and sex estimated by way of optical disectors. Acta Stereologica 8:251–256

    Google Scholar 

  • Rausch R, Babb TL (1993) Hippocampal neuron loss and memory scores before and after temporal lobe surgery for epilepsy. Arch Neurol 50:812–817

    Google Scholar 

  • Regeur L, Pakkenberg B (1989) Optimizing sampling designs for volume measurements of components of human brain using a stereological method. J Microsc 155:113–121

    Google Scholar 

  • Room P, Groenewegen HJ (1986) Connections of the parahippocampal cortex. I. Cortical afferents. J Comp Neurol 251:415–450

    Google Scholar 

  • Rose M (1926) Der Allocortex bei Tier und Mensch. J Psychol Neurol 34:1–111

    Google Scholar 

  • Rose M (1927) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol 34:262–401

    Google Scholar 

  • Rose S (1927) Vergleichende Messungen im Allocortex bei Tier und Mensch. J Psychol Neurol 34:250–255

    Google Scholar 

  • Rosene DL, Hoesen GW van (1987) The hippocampal formation of the primate brain: a review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (eds) Further aspects of cortical function, including hippocampus. (Cerebral cortex, vol 6) Plenum Press, New York, pp 345–456

    Google Scholar 

  • Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifacts. J Histochem Cytochem 34:1301–1315

    Google Scholar 

  • Röthig W (1974) Korrelation zwischen Gesamthirn- und Kleinhirngewicht des Menschen im Laufe der Ontogenese. J Hirnforsch 15:203–209

    Google Scholar 

  • Sanides F (1969) Comparative architectonics of the neocortex of mammals and their evolutionary interpretation. Ann NY Acad Sci 167:404–423

    Google Scholar 

  • Scholz W (1957) Die nicht zur Erweichung führenden unvollständigen Gewebsnekrosen (Elektive Parenchymnekrose). In: Scholz W (ed) Handbuch der speziellen pathologischen Anatomie und Histologie, vol XIII. Nervensystem, part 1/B, Springer, Berlin Heidelberg New York, pp 1284–1325

    Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Google Scholar 

  • Sgonina K (1937) Zur vergleichenden Anatomie der Entorhinal- und Prasubikularregion. J Psychol Neurol 48:56–163

    Google Scholar 

  • Smith RW, White LE (1964) The fiberarchitectonics of the cat hippocampal formation. J Comp Neurol 11:27

    Google Scholar 

  • Spann W, Dustmann HO (1965) Das menschliche Hirngewicht und seine Abhängigkeit von Lebensalter, Körperlänge, Todesursache und Beruf. Dtsch Z Ges Gericht Med 56:299–317

    Google Scholar 

  • Steinmetz H, Rademacher J, Jäncke L, Huang Y, Thron A, Zilles K (1990) Total surface of temporoparietal intrasylvian cortex: diverging left-right asymmetries. Brain Lang 39:357–372

    Google Scholar 

  • Stephan H (1960) Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z Wiss Zool 164:143–172

    Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 4. Nervensystem, part 9. Springer, Berlin Heidelberg New York, pp 1–998

    Google Scholar 

  • Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci 13:2430–2451

    Google Scholar 

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    Google Scholar 

  • Teszner D, Tzavaras A, Gruner J, Hecaen H (1972) L'asymétrie droite-gauche du planum temporale: à propos de l'étude anatomique de 100 cerveaux. Rev Neurol 126:444–449

    Google Scholar 

  • Trillo L, Gonzalo LM (1992) Ageing of the human entorhinal cortex and subicular complex. Histol Histopathol 7:17–22

    Google Scholar 

  • Vaz Ferreira A (1951) The cortical areas of the albino rat studied by silver impregnation. J Comp Neurol 95:177–243

    Google Scholar 

  • Vijayashankar N, Brody H (1977a) Aging in the human brain. A study of the nucleus of the trochlear nerve. Acta Anat 99:169–172

    Google Scholar 

  • Vijayashankar N, Brody H (1977b) A study of aging in the human abducens nucleus. J Comp Neurol 173:433–438

    Google Scholar 

  • Vijayashankar N, Brody H (1979) A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. J Neuropathol Exp Neurol 38:490–497

    Google Scholar 

  • Wada J, Clarke R, Hamm A (1975) Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adult and 100 infant brains. Arch Neurol 32:239–246

    Google Scholar 

  • Weibel ER (1979) Stereological methods, vol 1. Academic Press, London New York, pp 1–415

    Google Scholar 

  • West MJ (1993a) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    Google Scholar 

  • West MJ (1993b) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Google Scholar 

  • West MJ, Gundersen HJG (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22

    Google Scholar 

  • Wilson CL, Isokawa M, Babb TL, Crandall PH, Levesque MF, Engel J Jr. (1991) Functional connections in the human temporal lobe. II, Evidence for a loss of functional linkage between contralateral limbic structures. Exp Brain Res 85:174–187

    Google Scholar 

  • Witter MP, Room P, Groenewegen HJ, Lohman AMH (1986) Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus. J Comp Neurol 252:78–94

    Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  CAS  PubMed  Google Scholar 

  • Wree A, Braak H, Schleicher A, Zilles K (1980) Biomathematical analysis of the neuronal loss in the aging human brain of both sexes, demonstrated in pigment preparations of the pars cerebellaris loci coerulei. Anat Embryol 160:105–119

    Google Scholar 

  • Zola-Morgan S, Squire LR, Glower RP, Rempel NL (1993) Damage to the perirhinal cortex exacerbates memory impairment following lesions to the hippocampal formation. J Neurosci 13:251–265

    Google Scholar 

  • Zunino G (1909) Die myeloarchitektonische Differenzierung der Groβhirnrinde beim Kaninchen (Lepus cuniculus). J Psychol Neurol 14:38–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Professor Henn was killed in a traffic accident in July 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinsen, H., Henn, R., Eisenmenger, W. et al. Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes. Anat Embryol 190, 181–194 (1994). https://doi.org/10.1007/BF00193414

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193414

Key words

Navigation