Skip to main content
Log in

Late Quaternary changes in surface water and deep water masses of the Nordic Seas and north-eastern North Atlantic: a review

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

Quantitative and semiquantitative proxy data based on more than 200 core-top samples and 100 deep-sea cores lead to important new insights about late Quaternary changes in paleo-oceanography, climate and microfaunal habitats in the north-eastern North Atlantic and Nordic Seas, insights resulting from a detailed investigation by the Kiel research project SFB 313/132 summarized in this paper. Planktonic foraminifera species provide reliable tracers of past sea surface temperatures and currents. The genus Beella in particular was found to trace subtropical water masses up to the far north. Benthic foraminifera species served as sensors of bottom currents and local flux rates of organic matter. New orders of time resolution are reached via stable isotope stratigraphy and accelerator mass spectrometry carbon-14 dating, allowing the identification of meltwater events lasting a few hundred years and shorter, a time range where, however, the yet unquantified role of bioturbation presents a growing problem. Based on this high-resolution stratigraphy a number of ‘time slices’ (synoptic time intervals) are defined to reconstruct the incursion of Atlantic water masses, to map paleocurrent patterns within the Nordic Seas and the north-eastern North Atlantic and to test alternative circulation models — for example, for the last glacial maximum (LGM) and various meltwater episodes. These are clearly coeval with Dansgaard-Oeschger events found in Greenland ice cores, with the actual cause of the flickering climate as yet unknown. Likewise, there is ongoing controversy about the extent of past sea-ice cover and about possible changes from the present anti-estuarine to estuarine mode of deep water exchange between the North Atlantic and the Nordic Seas during the LGM. South of Iceland, however, the history of deep water renewal over the last glacial cycle covering the last 30000 years was largely deciphered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard K, Swift JH, Carmack EC (1985) Thermohaline circulation in the Arctic Mediterranean Seas. J Geophys Res 90 (C3): 4833–4846

    Google Scholar 

  • Alley RB, Meese DA, Shumann CA, Gow AJ, Taylor KC, Grootes PM, White JWC, Ram M, Waddington ED, Mayewski PA, Zielinski GA (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–529

    Google Scholar 

  • Altenbach AV (1988) Deep-sea benthic benthic foraminifera and flux rate of organic carbon. Rev Palèobiol Vol Spec 2:719–720

    Google Scholar 

  • Altenbach AV (1992) Verbreitungsmuster benthischer Foraminiferen im Arktischen Ozean and in glazialen and interglazialen Sedimenten des Europäischen Nordmeeres, Habilitationsschrift an der Math. Nat Fakultät, Univ Kiel: 1–111

  • Altenbach AV, Heeger T, Linke P, Spindler M, Thies A. (1993) Miliolinella subrotunda (Montagu), a miliolid foraminifer building large detritic tubes for a temporary epibenthic lifestyle. Mar Micropalaeontol 20:293–301

    Google Scholar 

  • Bard E, Arnold M, Duprat J, Moyes J, Duplessy JC (1987) Retreat velocity of the northern Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328:791–794

    Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14C timescale over the past 30000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410

    Google Scholar 

  • Bard E, Arnold M, Fairbanks RG, Hamelin B (1993) 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35:191–201

    Google Scholar 

  • Bauch H (1992) Planktische Foraminiferen im Europäischen Nordmeer — Ihre Bedeutung für die paläoozeanographische Interpretation während der letzten 600000 Jahre.Dissertation Math-Nat Fakultät, Univ Kiel: 1–108

  • Birgisdottir L (1990) Die paläo-ozeanographische Entwicklung der Islandsee in den letzten 500000 Jahren. Dissertation Math-Nat. Fakultät, Univ Kiel: 1–111

  • Bischof J (1990a) Dropstones im Europaischen Nordmeer.Dissertation Math-Nat. Fakultat, Univ Kiel: 1–127

  • Bischof J (1990b): Dropstones in the Norwegian-Greenland Seas — indications of late Quaternary circulation patterns? In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic Versus Antarctic. Kluwer, Dordrecht, pp 499–518

    Google Scholar 

  • Blaume F (1992) Hochakkumulationsgebiete am norwegischen Kontinentalhang: Sedimentologische Abbilder Topographiege-führter Strömungsmuster. PhD Thesis, Univ Kiel, Ber Sonderforschungsber 313 36:1–150

  • Bodungen von B (1989) Pelagische Primärproduktion und vertikaler Partikelfluß im Ocean. methodische and konzeptuelleA spekte. Habilitationsschrift an der Math Nat Fakultät, Univ Kiel: 1–156

  • Bond G, Heinrich H, Broecker WS, Labeyrie L, McManus J, Andrews J, Huon S, Jantschick R, Clasen S, Simet C, Tedesco K, Mieczyslawa K, Bonani, G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360:245–249

    Google Scholar 

  • Bond G, Broecker WS, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the Sea. Eldigio Press, Palisades, New York, pp 1–689

    Google Scholar 

  • Broecker WS, Peng T-H (1989) The oceanic salt pump. Does it contribute to the glacial-interglacial difference in atmospheric CO2 content? Global Biochem Cycles 3:15–239

    Google Scholar 

  • Broecker WS, Bond G, Mieczyslawa K, Clark E, McManus J (1992) Origin of the North Atlantic's Heinrich layers. Clim Dyn 6:265–273

    Google Scholar 

  • CLIMAP

  • Corliss BH (1985) Microhabitats of benthic Foraminifera within deep-sea sediments. Nature 314:435–438

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jansen D, Gundestrup NS, Hammer CU, Hvidberg CU, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • Dickson RR, Meincke J, Malmber SA, Lee AJ (1990) The “Great Salinity Anomaly” in the Northern North Atlantic. Progr Oceanogr 20:103–151

    Google Scholar 

  • Dietrich G (1969) Atlas of the hydrography of the northern North Atlantic Ocean. Con Int Expl Mer Serv Hydrogr, pp 1–140

  • Duplessy JC, Labeyrie L, Blanc PL (1988) Norwegian Sea deep water variation over the last climatic cycle: paleo-oceanographical implications. In: Wanner H, Siegenthaler U (eds) Long and Short Term Variability of Climate, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Duplessy JC, Labeyrie L, Juillet-Leclerc A, Maitre F, Duprat J, Sarnthein M (1991) Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanol A 14:311–324

    Google Scholar 

  • Eglinton G, Bradshaw SA, Rosell A, Sarnthein M, Pflaumann U, Tiedemann R (1992) Molecular record of secular sea-surface temperature changes for glacial terminations I, II, and IV. Nature 356:423–426

    Google Scholar 

  • Erlenkeuser H, Haake FW (1992) Oxygen isotope stage 5 in the Norwegian-Greenland Sea: oceanographic and ecologic aspects from isotopic and benthic foraminiferal evidence [abstract]. 4th Int Conf Paleoceanogr Kiel. Berichte-Reports, Geol-Paläont Inst Univ Kiel 57, 108

  • Gehring H (1989) Beitrag zur paläoozeanographischen Entwicklung der südwestlichen Norwegischen See wahrend der letzten 405.000 Jahre. Unpubl MSc Thesis, Univ Kiel: 1–98

  • Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70–73

    Google Scholar 

  • Graf G (1989) Benthic-pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Google Scholar 

  • Haake FW, Pflaumann U (1989) Late Pleistocene foraminiferal stratigraphy on the Wring Plateau, Norwegian Sea. Boreas 18:343–356

    Google Scholar 

  • Haake FW, Erlenkeuser H, Pflaumann U (1992) Pullenia bulloides (d'Orbigny) in sediments of the Norwegian-Greenland Sea and the northeastern Atlantic Ocean: paleo-oceanographic evidence. Studies in Benthic Foraminifera, BENTHOS'90, Sendai 1990. Tokai University Press, pp 235–244

  • Hamich A (1991) Sedimentologische Untersuchungen eines Kernes (GIK 21906-2) aus der Grönland See. Unpubl MSc Thesis, Univ Kiel: 1–78

  • Henrich R (1990) Cycles, rhythms and events in Arctic and Antarctic glaciomarine deposits. In: Bleil, U, Thiede J (eds) Geological History of the Polar Oceans. Arctic Versus Antarctic. NATO ASI Series, C 308. Kluwer, Dordrecht, pp 213–244

    Google Scholar 

  • Henrich R (1992) Beckenanalyse des Europäischen Nordmeeres: Pelagische and glaziomarine Sedimenteinflüsse im Zeitraum 2.6 Ma his rezent. Habilitationsschrift Math-Nat Fakultät, Univ Kiel: 1–345

  • Henrich R, Thiede J (1991) Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka. Mar Geol 96:134–136

    Google Scholar 

  • Henrich R, Kassens H, Vogelsang E, Thiede J (1989) Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka. Mar Geol 86:283–319

    Google Scholar 

  • Hutson W, Prell W (1980) A paleontological transfer function FI-2 for Indian Ocean planktonic foraminifera. J Paleontol 54:381–399

    Google Scholar 

  • Imbrie J, Kipp NG (1972) A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Carribean Core. In: Turekian KK (ed) The Late Cenozoic Glacial Ages. Yale Univ Press, pp 71–181

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Moorley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger LA, Imbrie J, Hays J, Kukla G, Salzman B (eds) Milankovitch and Climate, Pt I, Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Jansen E, Erlenkeuser H (1985) Ocean circulation in the Norwegian Sea 15000 BP to present. Boreas 14:189–206

    Google Scholar 

  • Jansen E, Veum T (1990) Evidence for two-step deglaciation and its impact on North Atlantic deep water circulation. Nature 343:612–616

    Google Scholar 

  • Jansen E, Sejrup HP, Fjaeran T, Hald M, Holtedahl H, Skarbö O (1983) Late Weichselian paleoceanography of the southeastern Norwegian Sea. Norsk Geol Tidskr 63:117–146

    Google Scholar 

  • Johannessen T, Jansen E, Flatoy A, Ravelo AC (1993) The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of Greenland, Iceland, Norwegian Seas. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds): Carbon Cycling in the Ocean: Constraints on the Ocean's Role in Global Change. NATO ASI Series, Vol. 117. Springer Verlag, Heidelberg, pp 61–85

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer, CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313

    Google Scholar 

  • Jones GA, Keigwin LD (1989) Evidence from Fram Strait (78°) for early deglaciation. Nature 336:56–59

    Google Scholar 

  • Jung S. Wassermassenaustausch zwischen Norwegensee, Grönlandsee und dem Nordatlantik über das Rockall-Plateau. PhD Thesis, Univ Kiel, in prep

  • Ringer B (1990) Zur paläoozeanographischen Entwicklung der Island See wahrend der letzten 360.000 Jahre. Unpubl MscThesis, Univ Kiel: 1–69

  • Kaminski MA, Grassle JF, Whitlatch RB(1988) Life history and recolonisation among agglutinated foraminifera in the Panama basin. In: Gradstein MIT, Rögel F (eds) Second Workshop on Agglutinated Foraminifera. Abh Geol Bundesanstalt, Wien 41:229–243

  • Karpuz NK, Jansen E (1992) A high resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climatic changes. Paleoceanogr 7:499–520

    Google Scholar 

  • Kassens H (1990) Verfestigte Sedimentlagen und seismische Reflektoren: Fruhdiagenese und Paläo-Ozeanography in der Norwegischen See. PhD Thesis, Univ Kiel: 1–120

  • Kellogg TB (1980) Paleoclimatology and paleoceanography of the Norwegian-Greenland seas: glacial and interglacial contrasts. Boreas 9:115–137

    Google Scholar 

  • Kellogg TB, Duplessy JC, Shackleton NJ (1978) Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian Sea deep-sea cores. Boreas 7:61–73

    Google Scholar 

  • Kipp N (1976) New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic. Geol Soc Am Mem 145:3–42

    Google Scholar 

  • Köhler SEI (1991) Spätquartäre paläo-ozeanographische Entwicklung des Nordpolarmeeres und Europaischen Nordmeeres anhand von Sauerstoff- und Kohlenstoffisotopenverhältnissen der planktischen Foraminifere N. pachyderma (sin.). PhD Thesis, Univ Kiel: 104 pp

  • Koltermann KP (1987) Die Tiefenzirkulation der Grönlandsee als Folge des thermohalinen Systems des Europaischen Nordmeeres. PhD Thesis, Univ Hamburg, Fachbereich Geowissenschaften: 1–287

  • Kromer B, Becker B (1993) German oak and pine 14C calibration, 7200–9439 B.C. Radiocarbon 35:125–135

    Google Scholar 

  • Labeyrie LD, Duplessy JC (1985) Changes in the oceanic 13C/12C ratio during the last 140,000 years: high latitude surface water records. Palaeogeogr Palaeoecol Palaeoclimatol 50:217–240

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Duprat J, Juillet-Leclerc A, Moyes J, Michel E, Kallel N, Shackleton NJ (1992) Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quat Sci Rev 11:401–414

    Google Scholar 

  • Lackschewitz KS (1991) Sedimentationsprozesse am aktiven mittelozeanischen Kolbeinsey Rücken (nördlich von Island). PhD Thesis, Univ Kiel: 1–121

  • Lehman S, Keigwin LD (1992) Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356:757–762

    Google Scholar 

  • Lehmann S, Jones GA, Keigwin LD, Andersen ES, Butenko G, Ostmo S-R (1991) Initiation of Fennoscandian ice-sheet retreat during the last glaciation. Nature 349:513–516

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof Pap 13:1–173

    Google Scholar 

  • Linke P, Lutze GF (1993) Microhabitats preferrence of benthic foraminifera — a static concept or a dynamic adaptation to optimize food acquisition? Mar Micropalaeontol 20:215–234

    Google Scholar 

  • Locker S, Blaume F, Erlenkeuser H, Rumohr J.: Plankton and tephra events on the continental margin off Mid Norway during Termination I., in prep

  • Lutze GF (1980) Depth distribution of benthic Foraminifera on the continental margin off NW Africa. ‘Meteor’-Forsch Ergeb. 32 C: 31–80

    Google Scholar 

  • Lutze GF, Altenbach AV (1991) Technik und Signifikanz der Lebendfärbung benthischer Foraminiferen mit Bengalrot. Geol Jahrb 128 A:251–265

    Google Scholar 

  • Lutze GF, Coulburn WT (1984) Recent benthic Foraminifera from the continental margin off Northwest Africa: community structure and distribution. Mar Micropalaeontol 8:361–401

    Google Scholar 

  • Lutze GF, Salomon B (1987) Foraminiferen-Verbreitung zwischen Norwegen und Grönland: ein Ost-West Profil. Ber Sonderforsch. Ber 313 Univ Kiel 6:69–78

    Google Scholar 

  • Lutze GF, Thiel H (1989) Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. J Foram Res 19:153–158

    Google Scholar 

  • Lutze GF, Pflaumann U, Weinholz P (1986) Jungquartäre Fluktuationen der benthischen Foraminiferenfauna in Tiefseesedimenten vor NW-Africa: Eine Reaktion auf Produktivitätsän-derungen im Oberflächenwasser. ‘Meteor’- Forsch Ergeb. 40 C:163–180

    Google Scholar 

  • Mackensen A, Sejrup HP, Jansen E (1985): The distribution of living benthic foraminifera on the continental slope and rise off southwest Norway. Mar Micropalaentol 9:275–306

    Google Scholar 

  • Mangerud J, Lie SE, Furnes H, Kristiansen IL, Lömo L (1984) A Younger Dryas ash bed in western Norway and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quat Res 21:85–104

    Google Scholar 

  • Martinsson DG, Nicklas GP, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high resolution 0–300,000 years chronostratigraphy. Quat Res 27:1–29

    Google Scholar 

  • Miller KG, Lohmann GP (1982) Environmental distribution of recent benthic foraminifera on the northeastern United States continental slope. Geol Soc Am Bull 93:200–206

    Google Scholar 

  • Morris TH (1988) Stable isotope stratigraphy of the Arctic Ocean: Fram Strait to Central Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 64:201–219

    Google Scholar 

  • Pflaumann U, Duprat J, Pujol C, Labeyrie LD (1994) SIMMAX transfer technique to deduce Atlantic sea surface temperatures from planktonic foraminifera — the EPOCH approach, in press

  • Piotrowski A (1990) Beitrag zur Reconstruktion der paläoozea-nographischen Entwicklung der Island See wahrend der letzten 30.000 Jahre. Unpubl MSc Th Univ Kiel: 1–55

  • Robinson SG, Maslin MA, McCave IN. Magnetic susceptibility variations in late Pleistocene deep sea sediments of the N.E. Atlantic: implications for ice rafting and paleocirculation at the last glacial maximum, in press

  • Rooth C (1982) Hydrology and Ocean Circulation. Progr Oceanogr VII: 131–149

    Google Scholar 

  • Rosell A (1994) Long-chain alkenones, alkyl alkenoates and total pigment abundance in the northeastern Atlantic. PhD Thesis, Univ Bristol: 1–164

  • Ruddiman WF, McIntyre A (1981) The North Atlantic Ocean during the last deglaciation. Palaeogeogr Palaeoclimatol Palaeoecol 35:145–214

    Google Scholar 

  • Sarnthein M, Tiedemann R (1990) Younger Dryas-style cooling events at glacial Terminations I-VI at ODP Site 658: associated benthic 813C anomalies constrain meltwater hypothesis. Paleoceanography 6:1041–1055

    Google Scholar 

  • Sarnthein M, Winn K (1990) Reconstruction of low and middle latitude export productivity, 30,000 Years BP to present: implication for global carbon reservoirs. In: Schlesinger ME (ed) Climate-Ocean Interaction. Kluwer, Dordrecht, pp 319–342

    Google Scholar 

  • Sarnthein M, Jansen E, Arnold M, Duplessy JC, Erlenkeuser H, Flatoy A, Veum T, Vogelsang E, Weinelt M (1992) δ18O-time slice reconstruction of meltwater anomalies at Termination I in the North Atlantic between 50 and 80°N. In: Bard E, Broecker WS (eds) The Last Deglaciation: Absolute and Radiocarbon Chronologies. Springer Berlin Heidelberg New York, pp 183–200

    Google Scholar 

  • Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G (1994) Changes in East Atlantic deep water circulation over the last 30,000 years: an eight time-slice record. Paleoceanography 9:209–267

    Google Scholar 

  • Sarnthein M, Jansen E, Weinelt M, Arnold M, Duplessy JC, Erlenkeuser H, Flatoy A, Johannessen G, Johannessen T, Jung S, Koc N, Labeyrie L, Maslin M, Pflaumann U, Schulz H. Variations in surface ocean circulation in the Northern North Atlantic over the last 55,000 years: a time slice record, in press

  • Schacht R (1991) Paläo-ozeanographische Entwicklung des Gebietes der zentralen Grönland Fracture Zone während der letzten 350 ka. Unpubl MSc Thesis, Univ Kiel: 1–121

  • Schulz H (1994) Meeresoberflächentemperaturen im Nordatlantik und in der Norwegisch-Grönländischen See vor 9000 Jahren. Auswirkungen des frühholozänen Insolationsmaximums. PhD Thesis, Univ Kiel: 1–119

  • Seidov D, Sarnthein M, Stattegger K. Toward a better understanding of the meltwater circulation near 13.6 ka BP — A numerical modelling approach, submitted

  • Sejrup HP, Haugen JE (1992) Foraminiferal amino acid stratigraphy of the Nordic Seas: geological data and pyrolysis experiments. Deep-Sea Res 39:603–623

    Google Scholar 

  • Shackleton NJ (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigeriua: isotopic changes in the ocean during the glacial. Cent Nat Rech Sci Colloq Int 219:203–209

    Google Scholar 

  • Spielhagen RF (1990) Die Eisdrift in der Framstraße wahrend der letzten 200.000 Jahre. PhD Thesis, Univ Kiel: 1–133

  • Spielhagen RF, Erlenkeuser H (1994) Stable isotopes in planktic foraminifers from Arctic Ocean sediment surface samples: reflection of the low salinity surface water layer. Mar Geol 119:227–250

    Google Scholar 

  • Stabell B (1986) A diatom maximum horizon in upper Quaternary deposits. Geol Rundsch 75:175–184

    Google Scholar 

  • Stocker TF, Wright DG (1991) Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351:729–732

    Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230

    Google Scholar 

  • Struck U (1992) Zur Paläo-Ökologie benthischer Foraminiferen im Europäischen Nordmeer wahrend der letzten 600 000 Jahre. PhD Thesis, Univ Kiel: 89 pp

  • Struck U, Nees S (1991) Die stratigraphische Verbreitung von Siphotextularia rolshauseni (Phleger & Parker) in Sedimentkernen aus dem Europaischen Nordmeer. Geol Jahrb A 128:243–249

    Google Scholar 

  • Suess E (1980) Particulate organic carbon flux in the oceans — surface productivity and oxygen utilizations. Nature 288:260–263

    Google Scholar 

  • Thies A (1990) Die Benthosforaminiferen im Europäischen Nordmeer. PhD Thesis, Univ Kiel: 1–97

  • Timm S (1992) Rezente Tiefsee-Benthosforaminiferen aus Oberflächensedimenten des Golfes von guinea (Westafrika) — Taxonomie, Verbreitung, Okologie und Korngrößenfraktionen. Ber-Rep Geol-Paläontol Inst Mus Univ Kiel 59:1–192

    Google Scholar 

  • Trauth M. Bioturbate Signalverzerrung hochauflösender paläoo-zeanographischer Klimazeitserien. PhD Thesis, Univ Kiel, in prep

  • Veum T, Jansen E, Arnold M, Beyer I, Duplessy JC (1992) Water mass exchange between the North Atlantic and the Norwegian Sea during the last 28.000 years. Nature 356:783–785

    Google Scholar 

  • Vogelsang E (1990) Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff- and Sauerstoffisotopen. PhD Thesis, Univ Kiel: 1–136

  • Weinelt M (1993) Veränderungen der Oberflächenzirkulation im Europaischen Normeer wahrend der letzten 60000 Jahre —Hinweise aus stabilenlsotopen. PhD Thesis, Univ Kiel: 1–106

  • Weinelt M, Sarnthein M, Erlenkeuser H, Vogelsang E (1991) Early decay of the Barents Shelf Ice sheet — spread of stable isotope signals across the eastern Norwegian Sea. Norsk Geol Tidsskr 3:137–140

    Google Scholar 

  • Winn K, Sarnthein M, Erlenkeuser H (1991) δ18O stratigraphy and chronology of Kiel sediment cores from the east Atlantic. Ber-Rep Geol-Paläont Inst Mus Univ Kiel 45:1–99

    Google Scholar 

  • Zahn R, Markussen B, Thiede J (1986) Stable isotope data and depositional environments in the late Quaternary Arctic Ocean. Nature 314:433–435

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarnthein, M., Altenbach, A.V. Late Quaternary changes in surface water and deep water masses of the Nordic Seas and north-eastern North Atlantic: a review. Geol Rundsch 84, 89–107 (1995). https://doi.org/10.1007/BF00192244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192244

Key words

Navigation