Skip to main content

Advertisement

Log in

Neuroendocrine peptides in bone

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

A method for demineralization of bone, preserving the antigenicity of neuroactive peptides, was developed. In all parts of rat long bones, nerves immunoreactive to substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and tyrosine hydroxylase (TH) were detected after immunohistochemical staining. The majority of nerves were vascular, although several non-vascular endings were observed at the growth plate and amidst marrow cells. An abundance of nerves were demonstrated near the epiphyseal plate and in the periosteum, regions of high osteogenic activity. The occurrence of different nerve types was analyzed at different stages of heterotopic osteogenesis, induced by allogeneic bone matrix. Nerve fibres immunoreactive to SP, CGRP, NPY and TH occurred amidst differentiating chondroblastic cells in the second week. They gradually increased in number during the ensuing eight weeks. In an in vitro study of osteoblastic cells (UMR 106-01, ROS 17/2.8, Saos-2, MC3T3-E1) receptors to CGRP, VIP, noradrenaline (NA) and NPY were demonstrated as assessed by analysis of cyclic AMP formation. In UMR cells, NPY inhibited the effects of NA and parathyroid hormone (PTH), which is the first demonstration of a receptor interaction between a local neuropeptide and a systemic calcium regulating hormone. The combined findings indicate a neuroendocrine influence on bone physiology.

Résumé

Une méthode de déminéralisation de l'os, préservant l'antigénicité des peptides neuro-actifs, a été mise au point. Après coloration immuno-histochimique, on a mis en évidence, à tous les niveaux des os longs du rat, des nerfs immuno-réactifs à la substance P (SP), à la calcitonine peptide «gene-related» (CPGR), au polypeptide intestinal vaso-moteur (PIV), au neuropeptide Y (NPY), à la tyrosine hydroxylase (TH) et à l'interleukine 1 (IL-1). La majorité des nerfs sont vascularisés, bien que nombre de terminaisons non vascularisées aient été observées au niveau du cartilage de croissance et parmi les cellules de la moelle. On a montré la présence d'un grand nombre de fibres nerveuses à proximité de la plaque épiphysaire et dans le périoste, c'est à dire dans les régions d'importante activité ostéogénique. La fréquence des divers types de nerfs a été étudiée aux différentes étapes de l'ostéogénèse hétérotopique induite par la matrice osseuse allogénique. Les fibres nerveuses immunoréactives à SP, CPGR, NPY, TH et IL-1 apparaissent parmi les cellules chondroblastiques en voie de différenciation au cours de la deuxième semaine. Leur nombre augmente progressivement pendant les huit semaines suivantes. Dans une étude in vitro des cellules ostéoblastiques (UMR 106-01, ROS 17/2.8, Saos-2), des récepteurs de CPGR, PIV, noradrénaline (NA) et NPY ont pu être mis en évidence par l'analyse de la formation de l'AMP cyclique. L'action de l'IL-1 n'a pas été étudiée. Dans les cellules UMR, le NPY inhibe les effets de la NA et de l'hormone parathyroïdienne, ce qui est la première démonstration de l'interaction entre un neuro-peptide local et une hormone réglant le métabolisme systémique du calcium. Cet ensemble de constatations est en faveur d'une influence neuro-endocrinienne sur la physiologie osseuse et éventuellement aussi sur le développement du squelette.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjurholm A, Kreicbergs A, Ahmed M, Schultzberg M (1990) Noradrenergic and peptidergic nerves in the synovial membrane. Arthritis & Rheum 33: 859–865

    Google Scholar 

  2. Bjurholm A, Kreicbergs A, Schultzberg M (1989) Fixation and demineralization of bone tissue for immunohistochemical staining of neuropeptides. Cacif Tissue Int 45: 227–231

    Google Scholar 

  3. Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M (1988) Substance P- and CGRP-immunoreactive nerves in bone. Peptides 9: 165–171

    Article  CAS  PubMed  Google Scholar 

  4. Bjurholm A, Kreicbergs A, Terenius L, Goldstein M, Schultzberg M (1988) Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptideimmunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 25: 119–125

    Google Scholar 

  5. Bjurholm A, Kreicbergs A, Dahlberg L, Schultzberg M (1990) The occurrence of neuropeptides at different stages of heterotopic bone formation. Bone Miner 10: 95–107

    Article  CAS  PubMed  Google Scholar 

  6. Bjurholm A, Kreicbergs A, Schultzberg M, Lerner UH (1988) Parathyroid hormone- and Noradrenaline-induced enhancement of cyclic AMP in a cloned osteogenic sarcoma cell line (UMR 106) is inhibited by Neuropeptide Y. Acta Phys Scand 134: 451–452

    Google Scholar 

  7. [Reference deleted]

  8. Coons AH (1958) Fluorescent antibody method. In: Danielli F (ed) General cytochemical methods. Academic Press, New York

    Google Scholar 

  9. McCredie J (1974) Embryonic neuropathy: a hypothesis of neural crest injury as the pathogenesis of congenital malformations. Med J Aust 1: 159–163

    Google Scholar 

  10. Dietz FR (1989) Effect of denervation on limb growth. J Orthop Res 7: 292–303

    Google Scholar 

  11. Drinker CK, Drinker KR (1916) A method for maintaining artificial circulation through the tibia of the dog, with a demonstration of the vasomotor control of the marrow vessels. Am J Physiol 40: 514–521

    Google Scholar 

  12. Falck B, Hillarp N-Å, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds with formaldehyde. J Histochem Cytochem 10: 348–354

    CAS  Google Scholar 

  13. Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowka JA, Livnat S (1987) Noradrenergic sympathetic neural interactions with the immune system: Structure and function. Immunol Rev 100: 225–260

    Google Scholar 

  14. Freehafer AA, Mast WA (1965) Lower extremity fractures in patients with spinal-cord injury. J Bone Jt Surg 47: 683–694

    Google Scholar 

  15. Gillespie JA (1963) The nature of bone changes associated with nerve injuries and disuse. J Bone Jt Surg 36: 464–473

    Google Scholar 

  16. Hardy AG, Dickson JW (1963) Pathological ossification in traumatic paraplegia. J Bone Jt Surg 45: 76–87

    Google Scholar 

  17. Hohmann EL, Levine L, Tashjian Jr AH (1983) Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3′,5′ monophosphate-dependant mechanism. Endocrinol 112: 1233–1239

    Google Scholar 

  18. Hohmann EL, Tashjian Jr AH (1984) Functional receptors for vasoactive intestinal peptide on human osteosarcoma cells. Endocrinol 114: 1321–1327

    Google Scholar 

  19. Lundberg JM, Hökfelt T, Schultzberg M, Uvnäs-Wallensten K, Köhler C, Said SI (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurones of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neurosci 4: 1539–1559

    Article  CAS  PubMed  Google Scholar 

  20. Lundberg JM, Terenius L, Hökfelt T, Martling CR, Tatemoto K, Mutt V, Polak J, Bloom S, Goldstein M (1982) Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurones and effects of NPY on sympathetic function. Acta Phys Scand 116: 477–480

    Google Scholar 

  21. Lundberg JM, Hökfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurones-functional and pharmacological implications. In: Hökfelt T, Fuxe K, Pernow B (eds) Progress in brain research. Elsevier, Amsterdam

    Google Scholar 

  22. Michelangeli VP, Findlay DM, Fletcher A, Martin TJ (1986) Calcitonin generalated peptide (CGRP) acts independently of calcitonin on cyclic AMP formation in clonal osteogenic sarcoma cells. Calcif Tissue Int 39: 44–48

    Google Scholar 

  23. Miller MR, Kasahara M (1963) Observations on the innervation of the human long bones. Anat Rec 145: 13–23

    Google Scholar 

  24. Roberts WJ, Elardo SM (1985) Sympathetic activation of A-delta nociceptors. Somatosens Res 3: 33–44

    Google Scholar 

  25. Roos BA, Fischer JA, Pignat W, Atander CB, Raisz LG (1986) Evaluation of the in vivo and in vitro calcium-regulating actions of non-calcitonin peptides produced via calcitonin gene expression. Endocrinol 118: 46–51

    Google Scholar 

  26. D'Sousa M, MacIntyre I, Girgis SI, Mundy GR (1986) Human synthetic calcitonin gene-related peptide inhibits bone resorption. Endocrinol 119: 58–61

    Google Scholar 

  27. Sternberger LA (1969) Immunocytochemistry. Wiley, New York

    Google Scholar 

  28. Tippins JR, Morris HR, Panico M, Etienne T, Bevis P, Girgis S, MacIntyre I, Azria M, Attinger M (1984) The myotropic and plasma calcium-modulating effects of calcitonin gene-related peptide (CGRP). Neuroept 4: 425–434

    Google Scholar 

  29. Trotman NM, Kelly WD (1963) The effect of sympathectomy on blood flow to bone. J Am Med Assoc 183: 121–122

    Google Scholar 

  30. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Rel Res 53: 243–283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjurholm, A. Neuroendocrine peptides in bone. International Orthopaedics 15, 325–329 (1991). https://doi.org/10.1007/BF00186871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186871

Keywords

Navigation