Skip to main content
Log in

The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647–1651] which was originally developed for the analysis of 1Hα chemical shifts. By extending the Chemical-Shift Index to include 13Cα, 13Cβ and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a ‘consensus’ estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer S.J., Vinson V.K., Pollard T.D. and Torchia D.A. (1993) Biochemistry, 32, 6680–6688.

    Google Scholar 

  • Campbell-Burk S.L., Domailled P.J., Starovas M.A., Boucher W. and Laue E.D. (1992) J. Biomol. NMR, 2, 639–646.

    Google Scholar 

  • Clore G.M., Bax A., Driscoll P.C., Wingfield P.T. and Grronenborn A.M. (1990) Biochemistry, 29, 8172–8184.

    Google Scholar 

  • Constantine K.L., Goldfarb V., Wittekind M., Friedrichs M.S., Anthony J., Ng S.-C. and Mueller L. (1993) J. Biomol. NMR, 3, 41–54.

    Google Scholar 

  • Dalgarno D.C., Levine B.A. and Williams R.J.P. (1983) Biosci. Rep., 3, 443–452.

    Google Scholar 

  • Driscoll P.C., Clore G.M., Marion D., Wingfield P.T. and Gronenborn A.M. (1990) Biochemistry, 29, 3542–3556.

    Google Scholar 

  • Fairbrother W.J., Palmer A.G., Rance M., Reizer J., Saier M.H. and Wright P.E. (1992) Biochemistry, 31, 4413–4425.

    Google Scholar 

  • Grzesiek S., Dobeli H., Gentz R., Garotta G., Labhardt A.M. and Bax A. (1992) Biochemistry, 31, 8180–8190.

    Google Scholar 

  • Ikura M., Kay L.E. and Bax A. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  • Ikura M., Spera S., Barbato G., Kay L.E., Krinks M. and Bax A. (1991) Biochemistry, 30, 9216–9228.

    Google Scholar 

  • Ikura M., Clore G.M., Gronenborn A.M., Zhu G., Klee C.B. and Bax A. (1992) Science, 256, 632–638.

    Google Scholar 

  • Jorgensen A.M.M., Kristensen S.M., Led J.J. and Balschmidt P. (1992) J. Mol. Biol., 227, 1146–1163.

    Google Scholar 

  • Kabsch W. and Sander C. (1983) Biopolymers, 22, 2577–2637.

    Google Scholar 

  • Kessler H., Schmieder P. and Bermel W. (1990) Biopolymers, 30, 465–475.

    Google Scholar 

  • LeMaster D.M. and Richards F.M. (1988) Biochemistry, 27, 142–150.

    Google Scholar 

  • Mierke D.F., Grdadolnik S.G. and Kessler H. (1992) J. Am. Chem. Soc., 114, 8283–8284.

    Google Scholar 

  • Mott H.R., Driscoll P.C., Boyd J., Cook R.M., Weir M.P. and Campbell I.D. (1992) Biochemistry, 31, 7741–7744.

    Google Scholar 

  • Pastore A. and Saudek V. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • Pelton J.G., Torchia D.A., Meadow N.D., Wong C.Y. and Roseman S. (1991) Biochemistry, 30, 10043–10057.

    Google Scholar 

  • Powers R., Garrett D.S., March C.J., Frieden E.A., Gronenborn A.M. and Clore G.M. (1992) Biochemistry, 31, 4334–4346.

    Google Scholar 

  • Richards F.M. and Kundrot C.E. (1988) Protein Struct. Funct. Genet., 3, 71–84.

    Google Scholar 

  • Richardson J.S. and Richardson D.C. (1988) Science, 240, 1648–1652.

    Google Scholar 

  • Richarz R. and Wüthrich K. (1978) Biopolymers, 17, 2133–2141.

    Google Scholar 

  • Romier C., Bernassau J.M., Cambillau C. and Darbon H. (1993) Protein Eng., 6, 147–156.

    Google Scholar 

  • Saito H. (1986) Magn. Reson. Chem., 24, 835–845.

    Google Scholar 

  • Shirakawa M., Fairbrother W.J., Serikawa Y., Ohkubo T., Kyogoku Y. and Wright P.E. (1993) Biochemistry, 32, 2144–2153.

    Google Scholar 

  • Spera S. and Bax A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Stockman B.J., Scahill T.A., Roy M., Ulrich E.L., Strakalaitis N.A., Brunner D.P., Yem A.W. and Deibel M.R. (1992) Biochemistry, 31, 5237–5244.

    Google Scholar 

  • Vuister G.W., Delaglio F. and Bax A. (1993) J. Biomol. NMR, 3, 67–80.

    Google Scholar 

  • Wagner G. and Bruhwiler D. (1986) Biochemistry, 25, 5839–5843.

    Google Scholar 

  • Williamson M.P. (1990) Biopolymers, 29, 1423–1433.

    Google Scholar 

  • Wishart D.S., Richards F.M. and Sykes B.D. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Wishart D.S., Richards F.M. and Sykes B.D. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D., Methods Enzymol., in press.

  • Wittekind M., Gorlach M., Friedrichs M., Dreyfuss G. and Mueller L. (1992) Biochemistry, 31, 6254–6265.

    Google Scholar 

  • Xu R.X., Mettesheim D., Olejniczak E.T., Meadows R., Gemmecker G. and Fesik S.W. (1993) Biopolymers, 33, 525–550.

    Google Scholar 

  • Yamazaki T., Yoshida M., Kanaya S., Nakamura H. and Nagayama K. (1991) PitBiochemistry, 30, 6036–6047.

    Google Scholar 

  • Yamazaki T., Yoshida M. and Nagayama K. (1993) Biochemistry, 32, 5656–5669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary material is available in the form of a 10-page table (Table S1) describing the exact location of secondary structures in all 20 proteins as determined using the methods described in this paper. Requests for Table S1 should be directed to the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wishart, D.S., Sykes, B.D. The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4, 171–180 (1994). https://doi.org/10.1007/BF00175245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175245

Keywords

Navigation