Skip to main content
Log in

Evolution in thermodynamic perspective: An ecological approach

  • Published:
Biology and Philosophy Aims and scope Submit manuscript

Abstract

Recognition that biological systems are stabilized far from equilibrium by self-organizing, informed, autocatalytic cycles and structures that dissipate unusable energy and matter has led to recent attempts to reformulate evolutionary theory. We hold that such insights are consistent with the broad development of the Darwinian Tradition and with the concept of natural selection. Biological systems are selected that re not only more efficient than competitors but also enhance the integrity of the web of energetic relations in which they are embedded. But the expansion of the informational phase space, upon which selection acts, is also guaranteed by the properties of open informational-energetic systems. This provides a directionality and irreversibility to evolutionary processes that are not reflected in current theory.

For this thermodynamically-based program to progress, we believe that biological information should not be treated in isolation from energy flows, and that the ecological perspective must be given descriptive and explanatory primacy. Levels of the ecological hierarchy are relational parts of ecological systems in which there are stable, informed patterns of energy flow and entropic dissipation. Isomorphies between developmental patterns and ecological succession are revealing because they suggest that much of the encoded metabolic information in biological systems is internalized ecological information. The geneological hierarchy, to the extent that its information content reflects internalized ecological information, can therefore be redescribed as an ecological hierarchy.

This thermodynamic approach to evolution frees evolutionary theory from dependence on a crypto-Newtonian language more appropriate to closed equilibrial systems than to biological systems. It grounds biology non-reductively in physical law, and drives a conceptual wedge between functions of artifacts and functions of natural systems. This countenances legitimate use of teleology grounded in natural, teleomatic laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aczel, J. and Z. Daroczy: 1975, On Measures of Information and Their Characterization, Academic Press, New York.

    Google Scholar 

  • Atlan, H.: 1974, ‘On a Formal Definition of Organization’, Journal of Theoretical Biology 45, 295–304.

    Google Scholar 

  • Brandon, R. N.: 1981, ‘Biological Teleology: Questions and Answers’, Studies in the History and Philosophy of Science 12, 91–105.

    Google Scholar 

  • Brooks, D., D. D. Cumming, and P. H. LeBlond: 1988, ‘Dollo's Law and the Second Law of Thermodynamics: Analogy or Extension?’, in B. H. Weber, D. J. Depew, and J. D. Smith (eds.), Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA, pp. 189–224.

    Google Scholar 

  • Brooks, D. and E. Wiley: 1986, Evolution as Entropy: Toward a Unified Theory of Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Brooks, D. and E. Wiley: 1988, Evolution as Entropy: Toward a Unified Theory of Biology (Second Edition), University of Chicago Press, Chicago.

    Google Scholar 

  • Campbell, J. H.: 1982, ‘Autonomy in Evolution’, in R. Milkman (ed.), Perspectives on evolution, Sinauer, Sunderland, MA, pp. 190–201.

    Google Scholar 

  • Campbell, J. H.: 1985, ‘An Organizational Interpretation of Evolution’ in D. J. Depew and B. H. Weber (eds.), Evolution at a Crossroads: The New Biology and the New Philosophy of Science, MIT Press, Cambridge, MA, pp. 133–167.

    Google Scholar 

  • Campbell, J. H. and P. Perkins: 1988, ‘Transgenerational effects of drug and hormonal treatments in mammals: a review of observations and ideas’, Progress in Brain Research 73, 535–553.

    Google Scholar 

  • Clements, F. E. and V. E. Shelford: 1939, Bio-ecology, John Wiley and Sons, New York.

    Google Scholar 

  • Collier, J.: 1986, ‘Entropy in Evolution’, Biology and Philosophy 1, 5–24.

    Google Scholar 

  • Conrad, M.: 1983, Adaptability: The Significance of Variability from Molecule to Ecosystem, Plenum Press, New York.

    Google Scholar 

  • Csany, V.: 1985, ‘Autogenesis: the Evolution of Self-organizing Systems’ in J.-P. Aubin, D. Saari, and J. Sigmund (eds.), Dynamics of Macrosystems, Springer Verlag, New York.

    Google Scholar 

  • Darden, L. and N. Maull: 1977, ‘Interfield Theories’, Philosphyy of Science 44, 43–64.

    Google Scholar 

  • Dawkins, R.: 1976, The Selfish Gene, Oxford University Press, Oxford.

    Google Scholar 

  • Dawkins, R.: 1986, The Blind Watch Maker, Norton, New York.

    Google Scholar 

  • Denbigh, K. G. and J. S. Denbigh: 1985, Entropy in Relation to Incomplete Knowledge, Cambridge University Press, Cambridge.

    Google Scholar 

  • Demongeot, J., E. Goles, and M. Tchuente (eds.): 1985, Dynamical Systems and Cellular Automata, Academic Press, New York.

    Google Scholar 

  • Depew, D. J. and B. H. Weber: 1988, ‘Consequences of Nonequilibrium Thermodynamics for Darwinism’, in B. H. Weber, D. J. Depew, and J. D. Smith (eds.), Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA, pp. 317–354.

    Google Scholar 

  • Dyke, C.: 1988a, The Evolutionary Dynamics of Complex Systems: A Study in Biosocial Complexity, Oxford University Press, New York.

    Google Scholar 

  • Dyke, C.: 1988b, ‘Cities as Dissipative Structures’, in B. H. Weber, D. J. Depew, and J. D. Smith (eds.), Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA, pp. 355–367.

    Google Scholar 

  • Eldredge, N.: 1985, Unfinished Synthesis: Biological Hierarchies and Modern Evolutionary Thought, Oxford University Press, New York.

    Google Scholar 

  • Eldredge, N. and S. N. Salthe: 1984, ‘Hierarchy and Evolution’, Oxford Surveys in Evolutionary Biology 1, 184–208.

    Google Scholar 

  • Ferracin, A., E. Panichelli, M. Benassi, A. Di Nallo, and C. Steindler: 1978, ‘Self-Organizing Ability and Living Systems’, BioSystems 10, 307–317.

    Google Scholar 

  • Fisher, R. A.: 1930, The Genetical theory of natural selection, Oxford University Press, Oxford.

    Google Scholar 

  • Fox, S.: 1984, ‘Proteinoid Experiments and Evolutionary Theory’, in M.-W. Ho and P. T. Saunders (eds.), Beyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm, Academic Press, London, pp. 15–60.

    Google Scholar 

  • Gatlin, L.: 1972, Information Theory and the Living System, Columbia University Press, New York.

    Google Scholar 

  • Gould, S. J.: 1982, ‘Darwinism and the Expansion of Evolutionary Theory’, Science 216, 380–387.

    Google Scholar 

  • Gould, S. J. and R. C. Lewontin: 1979, ‘The Spandrels of San Marco and the Panglossian Paradigm: a Critique of the Adaptionist Programme’, Proceedings of the Royal Society, London, Series B 205, 581–598.

    Google Scholar 

  • Kauffman, S. A.: 1985, ‘Self-Organization, Selective Adaptation, and its Limits: a New Pattern of Inference in Evolution and Development’, in D. J. Depew and B. H. Weber (eds.), Evolution at a Crossroads: The New Biology and the New Philosophy of Science, MIT Press, Cambridge, MA, pp. 169–207.

    Google Scholar 

  • Khinchin, A. I.: 1957, Mathematical Foundations of Information Theory, Dover, New York.

    Google Scholar 

  • Kimura, M.: 1983, The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lakatos, I.: 1970, ‘Falsification and the Methodology of Scientific Research Programmes’, in I. Lakatos and A. Musgrave (eds.), Criticism and the Growth of Knowledge, Cambridge University Press, Cambridge, pp. 91–195.

    Google Scholar 

  • Landauer, R.: 1988, ‘Dissipation and Noise Immunity in Computation and Communication’, Nature 335, 779–784.

    Google Scholar 

  • Laudan, L.: 1977, Progress and Its Problems: Towards a Theory of Scientific Growth, University of California Press, Berkeley.

    Google Scholar 

  • Layzer, D.: 1977, ‘Information in Cosmology, Physics and Biology’, Int. J. Quantum Chem. 12 (suppl. 1), 185–195.

    Google Scholar 

  • Leontief, W.: 1951, The Structure of the American Economy, 1919–1939 (Second Edition), Oxford University Press, New York.

    Google Scholar 

  • Lewontin, R. C.: 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Lindeman, R. L.: 1942, ‘The Trophic-Dynamic Aspect of Ecology’, Ecology 23, 339–418.

    Google Scholar 

  • Lotka, A. J.: 1922, ‘Contribution to the Energetics of Evolution’, Proceedings of the National Academy of Science USA 8, 148–154.

    Google Scholar 

  • Lotka, A. J.: 1925, Elements of Physical Biology, Williams and Wilkins, Baltimore; reprinted as Elements of Mathematical Biology, Dover, New York, 1956.

    Google Scholar 

  • Lovelock, J. E.: 1979, Gaia: A New Look at Life on Earth, Oxford University Press, Oxford.

    Google Scholar 

  • Mayr, E.: 1982, The Growth of Biological Thought: Diversity, Evolution and Inheritance, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mayr, E.: 1985, ‘How Biology Differs from the Physical Sciences’, in D. J. Depew and B. H. Weber (eds.), Evolution at a Crossroads: The New Biology and the New Philosophy of Science, MIT Press, Cambridge, MA.

    Google Scholar 

  • Mayr, E.: 1988, Toward a New Philosophy of Biology: Observations of a EEvolutionist, Harvard University Press, Cambridge, MA. pp. 43–63.

    Google Scholar 

  • Morowitz, H. J., B. Heinz, and D. W. Deamer: 1988, ‘The Chemical Logic of a Minimum Protocell’, Origins of Life and Evolution of the Biosphere 18, 281–287.

    Google Scholar 

  • Odum, E.: 1953, Fundamentals of Ecology, Saunders, Philadelphia.

    Google Scholar 

  • Odum, E.: 1969, ‘The Strategy of Ecosystem Development’, Science 164, 262–270.

    Google Scholar 

  • Odum, H. T.: 1988, ‘Self-Organization, Trasformality, and Information’, Science 242, 1132–1139.

    Google Scholar 

  • Odum, H. T. and E. C. Odum: 1982, Energy Basis for Man and Nature (second edition), McGraw-Hill, New York.

    Google Scholar 

  • O'Grady, R. T.: 1984, ‘Evolutionary Theory and Teleology’, Journal of Theoretical Biology 107, 563–578.

    Google Scholar 

  • O'Grady, R. T. and D. R. Brooks: 1988, ‘Teleology and Biology’, in B. H. Weber, D. J. Wepew, and J. D. Smith (eds.), Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA. pp. 285–316.

    Google Scholar 

  • Olmsted, J.: 1988, ‘Observations on Evolution’, in B. H. Weber, D. J. Depew, and J. D. Smith (eds.), Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA. pp. 243–261.

    Google Scholar 

  • Peacocke, A. R.: 1983, An Introduction to the Physical Chemistry of Biological Organization, Oxford University Press, Oxford.

    Google Scholar 

  • Prigogine, I.: 1980, From Being to Becoming: Time and Complexity in the Physical Sciences, Freeman, San Francisco.

    Google Scholar 

  • Riedl, R.: 1977, ‘A Systems-Analytical Approach to Macro-Evolutionary Phenomena’, Quarterly Review of Biology 52, 351–370.

    Google Scholar 

  • Riedl, R.: 1978, Order in Living Organisms, Wiley-Interscience, New York.

    Google Scholar 

  • Rosen, R.: 1985, ‘Organisms as Casual Systems Which Are Not Mechanism: An Essay into the Nature of Complexity’ in R. Rosen (ed.) Theoretical Biology and Complexity, Academic Press, Orlando.

    Google Scholar 

  • Rosenberg, A.: 1985, The Structure of Biological Science, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rutledge, R. W., B. L. Basorre, and R. J. Mulholland: 1976, ‘Ecological Stability: An Information Theory Viewpoint’, Journal of Theoretical Biology 57, 355–371.

    Google Scholar 

  • Salthe, S. N.: 1985, Evolving Hierarchical Systems: Their Structure and Representation, Columbia University Press, New York.

    Google Scholar 

  • Schneider, E. D.: 1988, ‘Thermodynamics, Ecological Succession, and Natural Selection: A Common Thread’, in B. H. Weber, D. J. Depew, and J. D. Smith (eds.), Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge, MA. pp. 107–138.

    Google Scholar 

  • Serra, R. and G. Zanarni: 1986, Tra Ordine e Caos: Auto-Organizzazione e Imprevidibllita nei Sistemi Complessi, CLUB, Bologna.

    Google Scholar 

  • Serra, R., G. Zanarini, M. Andretta, and M. Compiani: 1986, Introduction to the Physics of Complex Systems, Pergamon Press, Oxford.

    Google Scholar 

  • Sober, E.: 1984, The Naure of Selection: Evolutionary Theory in Philosophical Focus, MIT Press, Cambridge, MA.

    Google Scholar 

  • Stent, G. S.: 1985, ‘Hermeneutics and the Analysis of Complex Biological Systems’, in D. J. Depew and B. H. Weber (eds.), Evolution at a Crossroads: The New Biology and the New Philosophy of Science, MIT Press, Cambridge, MA. pp. 209–225.

    Google Scholar 

  • Stuart, C. I. J. M.: 1985, ‘Bio-Informational Equivalence’, Journal of Theoretical Biology 113, 611–636.

    Google Scholar 

  • Tribus, M. and E. C. McIrvine: 1971, ‘Energy and Information’, Scientific American 255, 179–188.

    Google Scholar 

  • Ulanowicz, R. E.: 1980, ‘An Hypothesis on the Development of Natural Communities’, Journal of Theoretical Biology 85, 223–245.

    Google Scholar 

  • Ulanowicz, R. E.: 1986, Growth and Development: Ecosystems Phenomenology, Springer-Verlag, New York.

    Google Scholar 

  • Von Foerster, H.: 1960, ‘On Self-Organizing Systems and Their Environments’, in M. Yovits and S. Cameron (eds.), Self-Organizing Systems, Pergamon Press, New York.

    Google Scholar 

  • Weber, B. H., D. J. Depew, and J. D. Smith: 1988, Entropy, Information and Evolution: New Perspectives o n Physical and Biological Evolution, MIT Press, Cambridge, MA.

    Google Scholar 

  • Wicken, J. S.: 1984, Evolution, Information, and Thermodynamics: Extending the Darwinian Program, Oxford University Press, New York.

    Google Scholar 

  • Wicken, J. S.: 1984, ‘The Cosmic Breath: Reflections of the Thermodynamics Creation’, Zygon 19, 487–505.

    Google Scholar 

  • Wright, L.: 1973, ‘Functions’, Philosophical Review 82, 139–168.

    Google Scholar 

  • Zotin, A. I.: 1972, Thermodynamic Aspects of Developmental Biology, S. Karger, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, B.H., Depew, D.J., Dyke, C. et al. Evolution in thermodynamic perspective: An ecological approach. Biol Philos 4, 373–405 (1989). https://doi.org/10.1007/BF00162587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00162587

Key Words

Navigation