Skip to main content
Log in

Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks

I. Theoretical analysis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The criterion of minimum intermediate concentrations in steady states is suggested to be of essential relevance in the evolution of biochemical reaction networks. This extremum principle is phrased in two different ways, firstly in terms of total osmolarity of intermediates and, secondly, as a multiple criterion problem. The relationships between the two problems are elucidated and a solving method for the latter is then given. It turns out that in each optimal state, the network can be subdivided into a slow and a fast subsystem. The notion of convex conservation relations is introduced and the implications of such relations for the optimization problem are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1.Atkinson, D. E.: Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell. Curr. Top. Cell. Regul. 1, 29–43 (1969)

    Google Scholar 

  2. Chernikov, S. N.: Linear inequalities (in Russian). Moscow: Nauka 1968. German translation, Berlin: Deutscher Verlag der Wissenschaften 1971

    Google Scholar 

  3. Clarke, B. L.: Stability of complex reaction networks. In: Prigogine, I., Rice, S. A. (eds.) Advances in chemical physics, vol. 43, pp. 1–216. New York: Wiley 1980

    Google Scholar 

  4. Dibrov, B. F., Zhabotinsky, A. M., Kholodenko, B. N.: Dynamic stability of steady states and static stabilization in unbranched metabolic pathways. J. Math. Biol. 15, 51–64 (1982)

    Google Scholar 

  5. Geoffrion, A. M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Google Scholar 

  6. Guddat, J.: Parametrische Optimierung und Vektoroptimierung. In: Lommatzsch, K. (ed.): Anwendungen der linearen parametrischen Optimierung, pp. 54–75. Berlin: Akademie-Verlag 1979

    Google Scholar 

  7. Heinrich, R., Holzhiitter, H.-G., Schuster, S.: A theoretical approach to the evolution and structural design of enzymatic networks. Bull. Math. Biol. 49, 539–595 (1987)

    Google Scholar 

  8. Heinrich, R., Rapoport, S. M., Rapoport, T. A.: Metabolic regulation and mathematical models. Prog. Biophys. Molec. Biol. 32, 1–82 (1977)

    Google Scholar 

  9. Koch, A. L.: Metabolic control through reflexive enzyme action. J. theor. Biol. 15, 75–102 (1967)

    Google Scholar 

  10. Liljenström, H., Blomberg, C.: Site dependent time optimization of protein synthesis with special regard to accuracy. J. theor. Biol. 129, 41–56 (1987)

    Google Scholar 

  11. Majewski, R. A., Domach, M. M.: Consideration of the gain, enzymatic capacity utilization, and response time properties of metabolic networks as a function of operating point and structure. BioSystems 18, 15–22 (1985)

    Google Scholar 

  12. Moelwyn-Hughes, E. A.: Physical chemistry. Oxford: Pergamon 1964

    Google Scholar 

  13. Nožička, F., Guddat, J., Hollatz, H., Bank, B.: Theorie der linearen parametrischen Optimierung. Berlin: Akademie-Verlag 1974

    Google Scholar 

  14. Reder, C.: Metabolic control theory: A structural approach. J. theor. Biol. 135, 175–201 (1988)

    Google Scholar 

  15. Rockafellar, R.: Convex analysis. Princeton: University Press 1970

    Google Scholar 

  16. Rosen, R.: Optimality in biology and medicine. J. Math. Anal. Appl. 119, 203–222 (1986)

    Google Scholar 

  17. Savageau, M.: Biochemical systems analysis. Reading, Mass.: Addison-Wesley 1976

    Google Scholar 

  18. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization. Orlando: Academic Press 1985

    Google Scholar 

  19. Schauer, M., Heinrich, R.: Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks. Math. Biosci. 65, 155–171 (1983)

    Google Scholar 

  20. Schuster, S.: Unpublished results, available on request

  21. Schuster, S., Heinrich, R.: Time hierarchy in enzymatic reaction chains resulting from optimality principles. J. theor. Biol. 129, 189–209 (1987)

    Google Scholar 

  22. Schuster, S., Schuster, R.: Detecting strictly detailed balanced subnetworks in open chemical reaction networks. J. Math. Chem., in press

  23. Schuster, S., Schuster, R., Heinrich, R.: Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erythrocyte metabolism. J. Math. Biol. 29, 443–455 (1991)

    Google Scholar 

  24. Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions I. Berlin Heiderlberg New York: Springer 1970

    Google Scholar 

  25. Waley, S. G.: A note on the kinetics of multi-enzyme systems. Biochem. J. 91, 514–517 (1965)

    Google Scholar 

  26. Zeleny, M.: Linear multiobjective programming. Berlin Heidelberg New York: Springer 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, S., Heinrich, R. Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. J. Math. Biol. 29, 425–442 (1991). https://doi.org/10.1007/BF00160470

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160470

Key words

Navigation