Skip to main content
Log in

Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A resurgence of interest in the ecology of perennially ice-covered lakes in the McMurdo dry valleys has necessitated a review of our knowledge of the physical and chemical properties of these unusual lakes. Salinities in the ice-covered lakes cover a range from freshwater to hypersaline brines. Recent measurements of salt composition and concentrations in Lake Bonney reveal little change below the chemocline since extensive measurements made in 1960–1961, although lake level has risen by approximately 5 m since that time. The rise in lake level has resulted in a thickening of the freshwater layer above the chemocline. Temperature structure has adjusted to the effects of increased lake level on heat transfer processes such as transmission and absorption of solar radiation in the water column.

Questions about how water-column stability affects biology in Lake Bonney have motivated the formulation of a method to compute density from in situ measurements of temperature, conductivity and pressure. Owing to high salt concentration and unique ion ratios, we modified the UNESCO Equation of State for seawater to predict density at salinities greater than 42. The modifications merge smoothly with the UNESCO equations at a salinity of 42. At salinities below 42 the UNESCO equations give excellent predictions of density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angino, E. E., K. B. Armitage & J. C. Tash, 1964. Physicochemical limnology of Lake Bonney, Antarctica. Limnol. Oceanogr. 9: 207–217.

    Google Scholar 

  • Brewer, P G., 1975. Minor elements in sea water. Chapt. 5 in J. P. Riley & G. Skirrow (eds), Chemical Oceanography, Vol. 1, 2nd edn., Academic Press, London: 415–496.

    Google Scholar 

  • Burton, H. R., 1981. Chemistry, physics and evolution of Antarctic saline lakes. A review. Hydrobiologia 81/82 (Dev. Hydrobiol. 5): 339–362.

    Google Scholar 

  • Chen, C.-T. & F. J. Millero, 1977. The use of misuse of pure water PVT properties for lake waters. Nature 266: 707–708.

    Google Scholar 

  • Chen, C.-T. & F. J. Millero, 1986. Precise thermodynamic properties for natural waters covering only the limnological range. Limnol. Oceanogr. 31: 657–662.

    Google Scholar 

  • Chinn, T. J., 1993. Physical hydrology of the Dry Valleys lakes. In W. J. Green & E. I. Friedmann (eds), Physical and Biogeochemica Processed in Antarctic Lakes, Ant. Res. Ser. 59: 1–51. American Geophysical Union, Washington D.D., 216 pp.

    Google Scholar 

  • Clow, G. D., C. P. McKay, G. M. Simmons, Jr. & R. A. Wharton Jr., 1988. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J. Climate 1: 715–728.

    Google Scholar 

  • Craig, J. R., R. D. Fortner & B. L. Weand, 1974. Halite and hydro halite from Lake Bonney, Taylor Valley, Antarctica. Geology 2: 389–390.

    Google Scholar 

  • Culkin, F. & N. D. Smith, 1980. Determination of the concentration of potassium chloride solution having the same electrical conductivity, at 15 °C and infinite frequency, as standard seawater of salinity 35.000\% (chlomity 19.37394\%). IEEE J. Oceania Engineering, OE-5: 22–23.

    Google Scholar 

  • Fofonoff, N. P. & R. C. Millard, Jr., 1983. Algorithms for computation of fundamental properties of seawater. Unesco technical papers in marine science 44. Dive Marine Sciences, Unesco, Paris, 53 pp.

    Google Scholar 

  • Gibson, J. A. E., J. M. Ferris & H. R. Burton, 1990. Temperature density, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters. ANARI Research Notes 78. Australian National Antarctic Research Expeditions. Antarctic Division, Dept. of the Arts, Sport, the Environment, Tourism and Territories. Kingston, Tasmania, 31 pp.

    Google Scholar 

  • Hendy, C. H., A. T. Wilson, K. B. Popplewell & D. A. House 1977. Dating of geochemical events in Lake Bonney, Antarctica and their relation to glacial and climate changes. N.Z. J. Geol Geophys. 20: 1103–1122.

    Google Scholar 

  • Hewitt, G. F, 1960, Tables of the resistivity of aqueous sodium chloride solutions. U.K. Atomic Energy Authority Reseach Group Report, Chemical Engineering Division, Atomic Energ Research Establishment, Harwell, Berkshire, H.M.S.O., 16 pp.

    Google Scholar 

  • Hoare, R. A., 1968. Thermohaline convection in Lake Vanda Antarctica. J. Geophys. Res. 73: 607–612.

    Google Scholar 

  • Hoare, R. A., K. B. Popplewell, D. A. House, R. A. Henderson, W. M. Prebble & A. T. Wilson, 1964. Lake Bonney, Taylor Valley Antarctica: a natural solar energy trap. Nature. 202: 886–888.

    Google Scholar 

  • Lewis, E. L., 1980. The Practical Salinity Scale 1978 and it antecedents. IEEE J. Oceanic Engineering 1 OE-5: 3–8.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1992a. Spectral irradiance and bin optical properties in perennially ice-covered lakes of the Dr Valleys (McMurdo Sound, Antarctica). In D. H. Elliot (ed.), Contributions to Antarctic Research III, Antarctic Research Series 57: 1–14. American Geophysical Union, Washington, D.C., 155 pp.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1992b. Spectral irradiance and bio optical properties in perennially ice-covered lakes of the dry val leys (McMurdo Sound, Antarctica). Ant. Res. Ser. 57: 1–14.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1994. Natural fluorescence and quantum yields in vertically stationary phytoplankton from perennially ice-covered lakes. Limnol. Oceanogr. 39: 1399–1410.

    Google Scholar 

  • McKay, C. P., G. D. Clow, R. A. Wharton, Jr. & S. W. Squyres, 1985. Thickness of ice of perennially frozen lakes. Nature 313: 561–562.

    Google Scholar 

  • Millero, F. J., D. Lawson & A. Gonzalez, 1976. The density of artificial river and estuarine waters. J. Geophys. Res. 81: 1177–1179.

    Google Scholar 

  • Millero, F. J., C.-T. Chen, A. Bradshaw & K. Schleicher, 1980. A new high pressure equation of state for seawater. Deep-Sea Res. 27A: 255–264.

    Google Scholar 

  • Millero, F. J. & A. Poisson, 1981. International one-atmosphere equation of state of seawater. Deep-Sea Res. 28A: 625–629.

    Google Scholar 

  • Neale, P. J. & J. C. Priscu, 1995. The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: Acclimation to an extreme shade environment. Plant Cell Physiol. 36: 253–263.

    Google Scholar 

  • Priscu, J. C., 1995. Phytoplankton nutrient deficiency in lakes of the McMurdo dry valleys, Antarctica. Freshwat. Biol. 34: 215–227.

    Google Scholar 

  • Priscu, J. C., L. R. Priscu, W. F. Vincent & C. Howard-Williams, 1987. Photosynthate distribution by microplankton in permanently ice-covered Antarctic desert lakes. Limnol. Oceanogr. 32: 260–270.

    Google Scholar 

  • Priscu, J. C., L. R. Priscu, C. Howard-Williams & W. F. Vincent, 1988. Diel patterns of photosynthate biosynthesis by phytoplankton in permanently ice-covered Antarctic lakes under continuous sunlight. J. Plankton Res. 10: 333–340.

    Google Scholar 

  • Ragotzkie, R. A. & G. E. Likens, 1964. The heat balance of two Antarctic lakes. Limnol. Oceanogr. 9: 412–425.

    Google Scholar 

  • Sea-Bird Electronics, 1989. CTD Data Acquisition Software-SEASOFT VERSION 3.3G. Sea-Bird Electronics, Inc. Bellevue, Washington, 44 pp.

    Google Scholar 

  • Shirtcliffe, T. G. L. & R. F. Benseman, 1984. A sun-heated Antarctic lake. J. Geophys. Res. 69: 3355–3359.

    Google Scholar 

  • Spigel, R. H., Forne, I., Sheppard, I. & J. C. Priscu, 1991. Differences in temperature and conductivity between the east and west lobes of Lake Bonney: evidence for circulation within and between lobes. Antarctic J. of the U.S. 26: 221–222.

    Google Scholar 

  • Weand, B. L., R. C. Hoehn & B. C. Parker, 1977. Nutrient fluxes in Lake Bonney — a meromictic Antarctic lake. Arch. Hydrobiol. 80: 519–530.

    Google Scholar 

  • Wilson, A. T., 1981. A review of the geochemistry and lake physics of the Antarctic dry areas. In L. D. McGinnis (ed.), Dry Valley Drilling Project, Antarctic Research Series 33: 185–192. American Geophysical Union, Washington, D. C., 465 pp.

    Google Scholar 

  • Wilson, T. R. S., 1975. Salinity and the major elements of sea water. Chapt. 6 in J. P. Riley & G. Skirrow (eds), Chemical Oceanography Vol. 1, 2nd edn., Academic Press, London: 365–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spigel, R.H., Priscu, J.C. Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lake. Hydrobiologia 321, 177–190 (1996). https://doi.org/10.1007/BF00143749

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143749

Key words

Navigation