Skip to main content
Log in

A global model of changing N2O emissions from natural and perturbed soils

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A high resolution global model of the terrestrial biosphere is developed to estimate changes in nitrous oxide (N2O) emissions from 1860–1990. The model is driven by four anthropogenic perturbations, including land use change and nitrogen inputs from fertilizer, livestock manure, and atmospheric deposition of fossil fuel NO x . Global soil nitrogen mineralization, volatilization, and leaching fluxes are estimated by the model and converted to N2O emissions based on broad assumptions about their associated N2O yields. From 1860–1990, global N2O emissions associated with soil nitrogen mineralization are estimated to have decreased slightly from 5.9 to 5.7 Tg N/yr, due mainly to land clearing, while N2O emissions associated with volatilization and leaching of excess mineral nitrogen are estimated to have increased sharply from 0.45 to 3.3 Tg N/yr, due to all four anthropogenic perturbations. Taking into account the impact of each perturbation on soil nitrogen mineralization and on volatilization and leaching of excess mineral nitrogen, global 1990 N2O emissions of 1.4, 0.7, 0.4 and 0.08 Tg N/yr are attributed to fertilizer, livestock manure, land clearing and atmospheric deposition of fossil fuel NO x , respectively. Consideration of both the short and long-term fates of fertilizer nitrogen indicates that the N2O/fertilizer-N yield may be 2% or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AET mon :

(cm H2O) = monthly actual evapotranspiration

AET ann :

(cm H2O) = annual actual evapotranspiration

age h :

(years) = stand age of herbaceous biomass

age w :

(years) = stand age of woody biomass

atmblc :

(gC/m2/month) = net flux of CO2 from grid

biotoc :

(gC/g biomass) = 0.50 = convert g biomass to g C

beff h :

= 0.8 = fraction of cleared herbaceous litter that is burned

beff w :

= 0.4 = fraction of cleared woody litter that is burned

bfmin :

= 0.5 = fraction of burned N litter that is mineralized or converted to reactive gases which rapidly redeposit. Remainder assumed pyrodenitrified to N2. + N2O

bprob :

= probability that burned litter will be burned

burn h :

(gC/m2/month) = herbaceous litter burned after land clearing

burn w :

(gC/m2/month) = woody litter burned after land clearing

cbiomsh :

(gC/m2) = C herbaceous biomass pool

cbiomsw :

(gC/m2) = C woody biomass pool

clear :

(gC/m2/month) = woody litter C removed by land clearing

clearn :

(gN/m2/month) = woody litter N removed by land clearing

cldh :

(month−1) = herbaceous litter decomposition coefficient

cldw :

(month−1) = woody litter decomposition coefficient

clittrh :

(gC/m2) = C herbaceous litter pool

clittrw :

(gC/m2) = C woody litter pool

clph :

(month−1) = herbaceous litter production coefficient

clpw :

(month−1) = woody litter production coefficient

cnrath :

(gC/gN) = C/N ratio in herbaceous phytomass

cnrats :

(gC/gN) = C/N ratio in soil organic matter

cnratt :

(gC/gN) = average C/N ratio in total phytomass

cnratw :

(gC/gN) = C/N ratio in woody phytomass

crod :

(month−1) = forest clearing coefficient

csocd :

(month−1) = actual soil organic matter decompostion coefficient

decmult :

decomposition coefficient multiplier; natural =1.0; agricultural =1.0 (1.2 in sensitivity test)

fertmin :

(gN/m2/month) = inorganic fertilizer input

fleach :

fraction of excess inorganic N that is leached

fligh :

(g Lignin/ g C) = lignin fraction of herbaceous litter C

fligw :

(g Lignin/ g C) = 0.3 = lignin fraction of woody litter C

fln2o :

= .01–.02 = fraction of leached N emitted as N2O

fnav :

= 0.95 = fraction of mineral N available to plants

fosdep :

(gN/m2/month) = wet and dry atmospheric deposition of fossil fuel NO x

fresph :

= 0.5 = fraction of herbaceous litter decomposition that goes to CO2 respiration

fresps :

= 0.51 + .068 * sand = fraction of soil organic matter decomposition that goes to CO2 respiration

frespw :

= 0.3 * (* see comments in Section 2.3 under decomposition) = fraction of woody litter decomposition that goes to CO2 respiration

fsoil :

= ratio of NPP measured on given FAO soil type to NPFmiami

fstruct :

= 0.15 + 0.018 * ligton = fraction of herbaceous litter going to structural/woody pool

fvn2o :

= .05–.10 = fraction of excess volatilized mineral N emitted as N2O

fvol :

= .02 = fraction of gross mineralization flux and excess mineral N volatilized

fyield :

ratio of total agricultural NPP in a given country in 1980 to total NPPmiami of all displaced natural grids in that country

gimmob h :

(gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of herbaceous litter

gimmob s :

(gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of soil organic matter

gimmob w :

(gN/m2/month) = gross immobilization of inorganic N into microbial biomass due to decomposition of woody litter

graze :

(gC/m2/month) = C herbaceous biomass grazed by livestock

grazen :

(gN/m2/month) = N herbaceous biomass grazed by livestock

growth h :

(gC/m2/month) = herbaceous litter incorporated into microbial biomass

growth w :

(gC/m2/month) = woody litter incorporated into microbial biomass

gromin h :

(gN/m2/month) = gross N mineralization due to decomposition and burning of herbaceous litter

gromin s :

(gN/m2/month) = gross N mineralization due to decomposition of soil organic matter

gromin w :

(gN/m2/month) = gross N mineralization due to decomposition and burning of woody litter

herb :

herbaceous fraction by weight of total biomass

leach :

(gN/m2/month) = leaching (& volatilization) losses of excess inorganic N

ligton :

(g lignin-C/gN) = lignin/N ratio in fresh herbaceous litter

LP h :

(gC/m2/month)= C herbaceous litter production

LP :

(gC/m2/month) = C woody litter production

LPN h :

(gN/m2/month) = N herbaceous litter production

LPN W :

(gN/m2/month) = N woody litter production

manco2 :

(gC/m2/month) = grazed C respired by livestock

manlit :

(gC/m2/month) = C manure input (feces + urine)

n2oint :

(gN/m2/month) = intercept of N2O flux vs gromin regression

n2oleach :

(gN/m2/month) = N2O flux associated with leaching and volatilization of excess inorganic N

n2onat :

(gN/m2/month) = ‘natural’ N2O flux from soils

n2oslope :

slope of N2O flux vs gromin regression

nbiomsh :

(gN/m2) = N herbaceous biomass pool

nbiomsw :

(gN/m2) = N woody biomass pool

nfix :

(gN/m2/month) = N2 fixation + natural atmospheric deposition

nlittrh :

(gN/m2) = N herbaceous litter pool

nlittrw :

(gN/m2) = N woody litter pool

nmanlit :

(gN/m2/month) = organic N manure input (feces)

nmanmin :

(gN/m2/month) = inorganic N manure input (urine)

nmin :

(gN/m2) = inorganic N pool

NPP acth :

(gC/m2/month)= actual herbaceous net primary productivity

NPP actw :

(gC/m2/month) = actual woody net primary productivity

nvol :

(gN/m2/month) = volatilization losses from inorganic N pool

plntnav :

(gN/m2/month)= mineral N available to plants

plntup h :

(gN/m2/month) = inorganic N incorporated into herbaceous biomass

plntup w :

(gN/m2/month) = inorganic N incorporated into woody biomass

precip ann :

(mm) = mean annual precipitation

precip mon :

(mm) = mean monthly precipitation

pyroden h :

(gN/m2/month) = burned herbaceous litter N that is pyrodenitrified to N2

pyroden w :

(gN/m2/month) = burned woody litter N that is pyrodenitrified to N2

recyc :

fraction of N that is retranslocated before senescence

resp h :

(gC/m2/month) = herbaceous litter CO2 respiration

resp s :

(gC/m2/month) = soil organic carbon CO2 respiration

resp w :

(gC/m2/month) = woody litter CO2 respiration

sand :

sand fraction of soil

satrat :

ratio of maximum NPP to N-limited NPP

soiloc :

(gC/m2) = soil organic C pool

soilon :

(gN/m2) = soil organic N pool

temp ann :

(°C) = mean annual temperature

temp mon :

(°C) = mean monthly temperature

References

  • Aber, J. D. and Melillo, J. M.: 1982, ‘Nitrogen Immobilization in Decaying Hardwood Leaf Litter as a Function of Initial Nitrogen and Lignin Content’, Canadian Journal of Botany 60, 2263–2269.

    Google Scholar 

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: 1989, ‘Nitrogen Saturation in Northern Forest Ecosystems’, Bioscience 39, 378–386.

    Google Scholar 

  • Ayers, R. U., Schlesinger,W. H., and Socolow, R. H.: 1994, ‘Human Impacts on the Carbon and Nitrogen Cycles’, in Socolow, R. H., Andrews, C., Berkhout, F., and Thomas V. (eds.), Industrial Ecology and Global Change, Cambridge University Press.

  • Bates, D. R. and Hays, P. B.: 1967, ‘Atmospheric Nitrous Oxide’, Planet. Space Sci. 15, 189–197.

    Google Scholar 

  • Black, C. A.: 1968, Soil-Plant Relationships, Wiley and Sons, New York, 332 pp.

    Google Scholar 

  • Bouwman, A. F.: 1990, ‘Exchange of Greenhouse Gases between Terrestrial Ecosystems and the Atmosphere’, in Bouwman, A. F. (Ed.), Soils and the Greenhouse Effect, John Wiley and Sons, West Sussex, England, pp. 61–127.

    Google Scholar 

  • Bouwman, A. F., Fung, I., Matthews, E., and John, J.: 1993, ‘Global Analysis of the Potential for N2O Production in Natural Soils’, Global Biogeochemical Cycles 7, 557–597.

    Google Scholar 

  • Bouwman, A. F., Van der Hoek, K. W., and Olivier, J. G. J.: 1995, ‘Uncertainties in the Global Source Distribution of Nitrous Oxide’, J. Geo. Res. 100, 2785–2800.

    Google Scholar 

  • Bowden, W. B. and Bormann, F. H.: 1986, ‘Transport and Loss of Nitrous Oxide in Soil Water After Forest Clear-Cutting’, Science 233, 867–869.

    Google Scholar 

  • Bremner, J. M. and Blackmer, A. M.: 1981, ‘Terrestrial Nitrification as a Source of Atmospheric Nitrous Oxide’, in Delwiche, C. C. (ed.), Denitrification, Nitrification and Nitrous Oxide, John Wiley, New York, pp. 151–170.

    Google Scholar 

  • Buisjman, E., Maas, H. F. M., and Asman, W. A. H.: 1987, ‘Anthropogenic NH3 Emissions in Europe’, Atmospheric Environment 21, 1009–1022.

    Google Scholar 

  • Cicerone, R. J., Shetter, J. D., and Liu, S. C.: 1978, ‘Nitrous Oxide in Michigan Waters and in U.S. Municipal Waters’, Geo. Res. Lett. 5, 173–176.

    Google Scholar 

  • Cicerone, R. J.: 1989, ‘Analysis of Sources and Sinks of Atmospheric Nitrous Oxide (N2O)’, Geo. Res. 94, 18,265–18,271.

    Google Scholar 

  • Cofer III, W. R., Levine, J. S., Winstead, E. L., and Stocks, B. J.: 1991, ‘New Estimates of Nitrous Oxide Emissions from Biomass Burning’, Nature 349, 689–691.

    Google Scholar 

  • Climate Monitoring and Diagnostics Laboratory (CMDL): 1991, Summary Report 1991, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Boulder, CO.

    Google Scholar 

  • Climate Monitoring and Diagnostics Laboratory (CMDL): 1993, Summary Report 1993, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Boulder, CO.

    Google Scholar 

  • Cole, D. W., and Rapp, M.: 1981, ‘Elemental Cycling in Forest Ecosystems’, in Reichle, D. E. (ed.), Dynamic properties of Forest Ecosystems, Cambridge University Press, Cambridge, pp. 341–409.

    Google Scholar 

  • Crutzen, P. J.: 1974, ‘Estimates of Possible Variations in Total Ozone due to Natural Causes and Human Activities’, Ambio 3, 201–210.

    Google Scholar 

  • Crutzen, P. J. and Ehhalt, D. H.: 1977, ‘Effects of Nitrogen Fertilizers and Combustion on the Stratospheric Ozone Layer’, Ambio 6, 112–117.

    Google Scholar 

  • Crutzen, P. J. and Andreae, M. O.: 1990, ‘Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles’, Science 250, 1669–1677.

    Google Scholar 

  • Dasch, J. M.: 1992, ‘Nitrous Oxide Emissions from Vehicles’, J. Air Waste Manage. Assoc. 42, 63–67.

    Google Scholar 

  • Davidson, E. A.: 1991, ‘Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystems’, in Rogers, J. E. and Whitman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases' Methane, Nitrogen Oxides, and Halomethanes, Americal Society for Microbiology, Washington, D.C., pp. 219–235.

    Google Scholar 

  • Dignon, J.: 1992, ‘NO x and SO x Emissions from Fossil Fuels: A Global Distribution’, Atmospheric Environment 26, 1157–1163.

    Google Scholar 

  • Dignon, J. and Hameed, S.: 1989, ‘Global Emissions of Nitrogen and Sulfur Oxides from 1860 to 1980’, APCA Journal 39, 180–186.

    Google Scholar 

  • Dignon, J. and Hameed, S.: 1992, ‘Global Emissions of Nitrogen and Sulfur Oxides in Fossil Fuel Combustion 1970–1986’, J. Air Waste Manage Assoc. 42, 159–163.

    Google Scholar 

  • Donoso, L., Santana, R., and Sanhueza, E.: 1993, ‘Seasonal Variation of N2O Fluxes at at Tropical Savannah Site: Soil Consumption of N2O during the Dry Season’, Geo. Res. Lett. 20, 1379–1382.

    Google Scholar 

  • Eichner, M. J.: 1990, ‘Nitrous Oxide Emissions from Fertilized Soils: Summary of Available Data’, J. Environ. Qual. 19, 272–280.

    Google Scholar 

  • Elkins, J. W.: 1989, ‘State of the Research for Atmospheric Nitrous Oxide (N2O) in 1989’, Contribution for the Intergovernmental Panel on Climate Change.

  • Esser, G., 1987: ‘Sensitivity of Global Carbon Pools and Fluxes to Human Potential Climatic Impacts’, Tellus 39, 245–260.

    Google Scholar 

  • Esser, G. and Lieth, H.: 1986, ‘Evaluation of Climate Relevant Land Surface Characteristics from Remote Sensing’, Proc. ISLCP Conference, Rome, ESA Publ. SP-248, pp. 205–211.

  • Esser, G., Mack, F., and Wittenberg, U.: 1993, ‘High Resolution Biosphere Model (HRBM): Model Version 2.08, Documentation’, Institute for Plant Ecology, Justus-Liebig-University Giessen, Germany. 26 pp.

    Google Scholar 

  • Finck, A.: 1982, Fertilizers and Fertilization: Introduction and Practical Guide to Crop Fertilization, Verlag Chemie, Weinheim.

    Google Scholar 

  • Firestone, M. K. and Davidson, E. A.: 1989, ‘Microbial Basis of NO and N2O Production and Consumption’, in Andreae, M. O. and Schimel, D. S. (eds.), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Dahlem Konferenaen Chichester, John Wiley and Sons Ltd.

  • Food and Agricultural Organization of the United Nations, 1952–1990: FAO Fertilizer Yearbook, Rome, Italy (FAO Statistics Series).

  • Food and Agricultural Organization of the United Nations, 1947–92: FAO Production Yearbook, Rome, Italy (FAO Statistics Series).

  • Friedli, H. and Siegenthaler, U.: 1988, ‘Influence of N2O on Isotope Analyses in CO2 and Mass-Spectrometric Determination of N2O in air Samples’, Tellus 40B, 129–133.

    Google Scholar 

  • Friedlingstein, P., Fung, I., Holland, E., John, J., Brasseur, G., Erickson, D., and Schimel, D.: 1995, ‘On the Contribution of CO2 Fertilization to the Missing Biospheric Sink’, in press.

  • Garcia, R. R. and Solomon, S.: 1994, ‘A New Numerical Model of the Middle Atmosphere: 2. Ozone and Related Species’, J. Geo. Res. 99, 12,937–12,951.

    Google Scholar 

  • Godt, M. C.: 1989, Masters Thesis, University of Osnabrueck (in German).

  • Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W.: 1980, ‘Production of NO 2 and N2O by Nitrifying Bacteria at Reduced Concentrations of Oxygen’, Applied and Environmental Microbiology 40, 526–532.

    Google Scholar 

  • Hahn, J.: 1981, ‘Nitrous Oxide in the Oceans’, in Delwiche, C. C. (ed.) Denitrification, Nitrification and Nitrous Oxide, John Wiley, New York.

    Google Scholar 

  • Hemond, H. F. and Duran, A. P.: 1989, ‘Fluxes of N2O at the Sediment-Water Boundaries of a N-Rich River’, Wat. Resources Res. 23, 839–840.

    Google Scholar 

  • IPCC: 1990, Climate Change 1990. The IPCC Scientific Assessment. Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, 365 pp.

  • IPCC: 1992, Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, 200 pp.

  • IPCC: 1994, Climate Change 1994. An Evaluation of the IPCC IS92 Emission Scenarios. Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, 339 pp.

  • Isaksen, S. A. and Stordal, F.: 1986, ‘Ozone Perturbations by Enhanced Levels of CFCs, N2O and CH4: A Two-Dimensional Diabatic Circulation Study Including Uncertainty Estimates’, J. Geo. Res. 91, 5249–5263.

    Google Scholar 

  • Joergensen, K. S., Jensen, H. B., and Soerensen, J.: 1984, ‘Nitrous Oxide Production from Nitrification and Denitrification in Marine Sediment at Low Oxygen Concentrations’, Can. J. Microbio. 30, 1073–1078.

    Google Scholar 

  • Kaplan, W. A., Elkins, J. W., Kolb, C. E., McElroy, M. B., Wofsy, S. C., and Duran, A. P.: 1978, ‘An Estimate of the Atmospheric Yield of N2O Associated with Disposal of Human Waste’, Pure Appl. Geophys. 116, 424–438.

    Google Scholar 

  • Keller, M. and Matson, P. A.: 1993, ‘Biosphere-Atmosphere Exchange of Trace Gases in the Tropics: Land Use Change’, in Prinn, R. G. (ed.) Global Atmospheric-Biospheric Chemistry, Plenum Press, New York.

    Google Scholar 

  • Keller, M., Veldkamp, E., Weitz, A. M., and Reiners, W. A.: 1993, ‘Effect of Pasture Age on Soil Trace-Gas Emissions from a Deforested Area of Costa Rica’, Nature 365, 244–246.

    Google Scholar 

  • Khalil, M. A. and Rasmussen, R. A.: 1988, ‘Nitrous Oxide: Trends and Global Mass Balance over the Last 3000 Years’, Annals of Glaciology 10, 73–79.

    Google Scholar 

  • Khalil, M. A. and Rasmussen, R. A.: 1989, ‘Climate-Induced Feedbacks for the Global Cycles of Methane and Nitrous Oxide’, Tellus 41B, 554–559.

    Google Scholar 

  • Khalil, M. A. and Rasmussen, R. A.: 1992, ‘The Global Sources of Nitrous Oxide’, J. Geo. Res. 97, 14651–14660.

    Google Scholar 

  • Kinzig, A. P. and Socolow, R. H.: 1994, ‘Human Impacts on the Nitrogen Cycle’, Physics Today 47, 24–31.

    Google Scholar 

  • Ko, M. K., Sze, N. D., Weisenstein, D. K.: 1991, ‘Use of Satellite Data to Constrain the Model-Calculated Atmospheric Lifetimes for N2O: Implications for Other Trace Gases’, J. Geo. Res. 96, 7547–7552.

    Google Scholar 

  • Kroeze, C.: 1993, ‘Nitrous Oxide and Global Warming’, in Global Warming by Halocarbons and Nitrous Oxide, Ph.D. Thesis, University of Amsterdam, The Netherlands, 187 pp.

    Google Scholar 

  • Langford, A. O., Fehsenfeld, F. C., Zachariassen, J., and Schimel, D. S.: 1992, ‘Gaseous Ammonia Fluxes and Background Concentrations in Terrestrial Ecosystems of the United States’, Global Biogeochemical Cycles 6, 459–483.

    Google Scholar 

  • Leemans, R, 1990: ‘Global Holdridge Life Zone Classifications’, Digital Data, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 26MB.

    Google Scholar 

  • Leuenberger, M. and Seigenthaler, U.: 1992, ‘Ice-Age Atmospheric Concentration of Nitrous Oxide from an Antarctic Ice Core’, Nature 360, 449–451.

    Google Scholar 

  • Levy II, H., Mahlman, J. D., and Moxim, W. J.: 1982, ‘Tropospheric N2O Variability’, J. Geo. Res. 87, 3061–3080.

    Google Scholar 

  • Levy II, H., Kasibhatla, P. S., and Moxim, W. J.: 1995, ‘Global Distribution of Tropospheric NOX, Past, Present, and Future’, in preparation.

  • Liaw, Y. P., Sisterson, D. L., and Miller, N.L.: 1990, ‘Comparison of Field, Laboratory, and Theoretical Estimates of Global Nitrogen Fixation by Lightning’, J. Geo. Res. 95, 489–494.

    Google Scholar 

  • Lieth, H.: 1975, ‘Modeling the Primary Productivity of the World’, in Lieth, Whittaker (eds.), Primary Productivity of the Biosphere, Ecological Studies 14, Springer-Verlag, New York, Heidelberg, Berlin, pp. 237–283.

    Google Scholar 

  • Lipschultz, F., Zafiriou, O. C., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W.: 1981, ‘Production of NO and N2O by Soil Nitrifying Bacteria’, Nature 294, 61–643.

    Google Scholar 

  • Liu, S. C., Cicerone, R. J., and Donahue, T. M.: 1977, ‘Sources and Sinks of Atmospheric N2O and the Possible Ozone Reduction Due to Industrial Fixed Nitrogen Fertilizers’, Tellus 29, 251–263.

    Google Scholar 

  • Lobert, J. M., Scharffe, D. H., Hao, W.-M., Kuhlbusch, T. A., Seuwen, R., Warneck, P., and Crutzen, P. J.: 1991, ‘Experimental Evaluation of Biomass Burning Emissions: Nitrogen and Carbon Containing Compounds’, in Levine, J. S. (ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Luizäo, F., Matson, P., Livingston, G., Luizäo, R., and Vitousek, P.: 1989, ‘Nitrous Oxide Flux Following Tropical Land Clearing’, Global Biogeochemical Cycles 3, 281–285.

    Google Scholar 

  • Mack, F., and Esser, G.: 1993, ‘The Influence of Vegetation Fires on the Global Carbon Cycle’, Proceedings of the International Botanical Congress XV, Yokohama, p. 311.

  • Matson, P. A. and Vitousek, P. M.: 1990, ‘Ecosystem Approach to a Global Nitrous Oxide Budget’, BioScience 40, 667–672.

    Google Scholar 

  • Matson, P. A., Vitousek, P. M., Livingston, G. P., and Swanberg, N. A.: 1990, ‘Sources of Variation in Nitrous Oxide Flux from Amazonian Ecosystems’, J. Geo. Res. 95, 16789–16798.

    Google Scholar 

  • Matthews, E.: 1994, ‘Nitrogenous Fertilizers: Global Distribution of Consumption and Associated Emissions of Nitrous Oxide and Ammonia’, Global Biogeochemical Cycles 8, 411–439.

    Google Scholar 

  • McElroy, M. B. and Wofsy, S. C.: 1986, ‘Tropical Forests: Interactions with the Atmosphere’, in Prance, G. T. (ed.), Tropical Rain Forests and the World Atmosphere, Westview, Boulder, CO, pp. 33–60.

    Google Scholar 

  • McGuire, A. D., Melillo, J. M., Joyce, L. A, Kicklighter, D. W., Grace, A. L., Moore III, B., and Vorosmarty, C. J.: 1992, ‘Interaction Between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America’, Global Biogeochemical Cycles 6, 101–124.

    Google Scholar 

  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climate Change and Terrestrial Net Primary Production’, Nature 363, 234–240.

    Google Scholar 

  • Minschwaner, K., Salawitch, R. J., and McElroy, M. B.: 1993, ‘Absorption of Solar Radiation by O2: Implications for O3 and Lifetimes of N2O, CFCl3, and CF2Cl2’, J. Geo. Res. 98, 10543–10562.

    Google Scholar 

  • Mosier, A. R.: 1993, ‘Nitrous Oxide Emissions from Agricultural Soils’, presented at RIVM ‘International Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control’, National Institute for Public Health and Environmental Protection, Amersfoort, The Netherlands.

    Google Scholar 

  • Mosier, A. R., Schimel, D. S., Valentine, D., Bronson, K., and Parton, W.: 1991, ‘Methane and Nitrous Oxide Fluxes in Natural, Fertilized, and Unfertilized Grasslands’, Nature 350, 330–332.

    Google Scholar 

  • Mueller, J.-F.: 1992, ‘Geographical Distribution and Seasonal Variation of Surface Emissions and Deposition Velocities of Atmospheric Trace Gases’, J. Geo. Res. 97, 3787–3804.

    Google Scholar 

  • Mueller, J.-F. and Brasseur, B.: 1995, ‘A 3-Dimensional Chemical Transport Model of the Global Troposphere’, J. Geo. Res., submitted.

  • Muzio, L. J. and Kramlich, J. C.: 1988, ‘An Artifact in the Measurement of N2O rom Combustion Sources’, Geophys. Res. Lett. 15, 1369–1372.

    Google Scholar 

  • Nevison, C. D., Weiss, R. F., and Erickson III, D. J.: 1995, ‘Global Oceanic Nitrous Oxide Emissions’, J. Geo. Res. 100, 15,809–15,820.

    Google Scholar 

  • Ojima, D. S., Schimel, D. S., Parton, W. J., and Owensby, C. E.: 1994, ‘Long- and Short-Term Effects of Fire on Nitrogen Cycling in Tallgrass Prairie’, Biogeochemistry 24, 67–84.

    Google Scholar 

  • Olson, J. S., Watts, J. A., and Allison, L. J.: 1983, ‘Carbon in Live Vegetation of Major World Ecosystems’, ORNL-5862, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: 1987, ‘Divison S3 - Soil Microbiology and Biochemistry: Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands’, Soil Sci. Soc. Am. J. 51, 1173–1179.

    Google Scholar 

  • Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J-C., Seastedt, T., Garcia Moya, E., Kamnalrut, A., and Kinyamario, J. I.: 1993, ‘Observations and Modeling of Biomass and Soil Organic Matter Dynamics for the Grassland Biome Worldwide’, Global Biogeochemical Cycles. 7, 785–809.

    Google Scholar 

  • Paul, E. A. and Clark, F. E.: 1989, Soil Microbiology and Biochemistry, Academic Press, Inc., San Diego, CA, 273 pp.

    Google Scholar 

  • Pearman, G. I., Etheridge, D., de Silva, F., and Fraser, P. J.: 1986, ‘Evidence of Changing Concentrations of Atmospheric CO2, N2O and CH4 from Air Bubbles in Antarctic Ice’, Nature 320, 248–250.

    Google Scholar 

  • Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., Walton, J. J., and Hameed, S.: 1991, ‘Tropospheric Nitrogen: A Three-Dimensional Study of Sources, Distribulions, and Deposition’, J. Geo. Res. 96, 959–990.

    Google Scholar 

  • Post, W. M., Pastor, J., Zinke, P. J., and Slangenberger, A. G.: 1985, ‘Global Patterns of Soil Nitrogen Storage’, Nature 317, 613–616.

    Google Scholar 

  • Poth, M. and Focht, D. D.: 1985, ‘15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: An Examination of Nitrifier Denitrification’, Applied Environmental Microbiology 49, 1134–1141.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. of Biogeography 19, 117–134.

    Google Scholar 

  • Prinn, R. G., Simmonds, P. G., Rasmussen, R. A., Rosen, R. D., Alyea, F. N., Cardelino, C. A., Crawford, A. J., Cunnold, D. M., Fraser, P. J., and Lovelock, J. E.: 1990, ‘Atmospheric Emissions and Trends of Nitrous Oxide Deduced from Ten Years of ALE-GAGE Data’, J. Geo. Res. 95, 18369–18385.

    Google Scholar 

  • Raich, J. W., Rastetter, E. B., and Melillo, J. M.: 1991, ‘Potential NPP in South America: Application of a Global Model’, Ecological Applications 1, p. 399.

    Google Scholar 

  • Rastetter, E. B., McKane, R. B., Shaver, G. R., and Melillo, J. M.: 1992, ‘Changes in C Storage by Terrestrial Ecosystems: How C-N Interactions Restrict Responses to CO2 and Temperature’, Water, Air, and Soil Pollution 64, 327–344.

    Google Scholar 

  • Reuss, S. K., Ellis, J. E., Ward, G. M., and Swift, D. M.: 1990, ‘Global Ruminant Livestock Production Systems. Final Report to the EPA for Project “Livestock Production Systems: Factors Influencing Global Methane Emissions”’, Natural Resource Ecology Laboratory, Fort Collins, Colorado.

    Google Scholar 

  • Richards, J. F., Olson, J. S., and Rotty, R. M.: 1983, ‘Development of a Database for Carbon Dioxide Releases Resulting from Conversion of Land to Agricultural Uses’, Institute for Energy Analysis, Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (ORAU/IEA-82–10M, ORNL/TM-8801).

    Google Scholar 

  • Rifkin, J.: 1992, Beyond Beef: The Rise and Fall of the Cattle Culture, Dutton, New York, NY, 353 pp.

    Google Scholar 

  • Ronen, D., Magaritz, M., Almon, E.: 1988, ‘Contaminated Aquifers are a Forgotten Component of the Global N2O Budget’, Nature 335, 57–59.

    Google Scholar 

  • Ruess, R. W. and McNaughton, S. J.: 1987, ‘Grazing and the Dynamics of Nutrient and Energy Regulated Microbial Processes in the Serengeti Grasslands’, Oikos 49, 101–110.

    Google Scholar 

  • Ryden, J. C.: 1981, ‘N2O Exchange Between a Grassland Soil and the Atmosphere’, Nature 292, 235–237.

    Google Scholar 

  • Ryden, J. C.: 1985, ‘Denitrification loss from Managed Grassland’, in H. L. Golterman (ed.), Denitrification in the Nitrogen Cycle, pp. 121–134.

  • Sahrawat, W. H. and Keeney, D. R.: 1986, ‘Nitrous Oxide Emissions from Soils’, Advances in Soil Science 4, 103–148.

    Google Scholar 

  • Sanford, R. L., Parton, W. J., Ojima, D. S., Lodge, D. J.: 1991, ‘Hurricane Effects on Soil Organic Matter Dynamics and Forest Production in the Luquillo Experimental Forest, Puerto Rico: Results of Simulation Modeling’, Biotropica 23, 364–372.

    Google Scholar 

  • Schimel, D. S., Parton, W. J., Adamsen, F. J., Woodmansee, R. G., Senft, R. L., and Stillwell, M. A.: 1986, ‘The Role of Cattle in the Volatile Loss of Nitrogen from a Shortgrass Steppe’, Biogeochemistry 2, 39–52.

    Google Scholar 

  • Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., and Townsend, A. R., 1994: ‘Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils’, Global Biogeochemical Cycles 8, 279–293.

    Google Scholar 

  • Schmidt, J., Seiler, W., and Conrad, R.: 1988, ‘Emission of Nitrous Oxide from Temperate Forest Soils into the Atmopshere’, J. Atmos. Chem. 6, 95–115.

    Google Scholar 

  • Schulze, E. D.: 1989, ‘Air Pollution and Forest Decline in a Spruce (Picea abies) Forest’, Science 244, 776–783.

    Google Scholar 

  • Seitzinger, S. P.: 1988, ‘Denitrification in Freshwater and Coastal Marine Ecosystems: Ecological and Geochemical Significance’, Limnol. Oceanogr. 33, 702–724.

    Google Scholar 

  • Seitzinger, S. P.: 1990, ‘Denitrification in Aquatic Sediments’, in Revsbech, N. P. and Sorensen, J. (eds.), Denitrification in Soil and Sediment, Plenum Press, pp. 301–302.

  • Souchu, P., and Etchanchu, D.: 1990, ‘The Environmental Effects of the Intensive Application of Nitrogen Fertilizers in Western Europe: Past Problems and Future Prospects’, International Institute for Applied Systems Analysis Working Paper.

  • Thiemens, M. H. and Trogler, W. C.: 1991, ‘Nylon Production: An Unknown Source of Atmospheric Nitrous Oxide’, Science 251, 932–934.

    Google Scholar 

  • Van Breemen, N. and Feijtel, T. C. J.: 1990, ‘Soil Processes and Properties Involved in the Production of Greenhouse Gases, with Special Relevance to Soil Taxonomic Systems’, in Bouwman, A. F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons Ltd., West Sussex, England.

    Google Scholar 

  • Van Faassen, H. G.: 1993, ‘Modeling N2O Emission from (Grazed) Grassland: A Literature Review’, Note 269, DLO-Instituut voor Bodemvruchtbaarheid, Haren, The Netherlands.

    Google Scholar 

  • Vitousek, P. M., Fahey, T., Johnson, D. W., and Swift, M.: 1988, ‘Element Interactions in Forest Ecosystems: Succession, Allometry and Input-Output Budgets’, Biogeochemistry 5, 7–34.

    Google Scholar 

  • Weiss, R. F.: 1981, ‘The Temporal and Spatial Distribution of Troposhperic Nitrous Oxide’, J. Geo. Res. 86, 7197.

    Google Scholar 

  • Weiss, R. F.: 1994, ‘Changing Global Concentrations of Atmospheric Nitrous Oxide’, in Tanaka, M. (ed.) Proceedings of the International Symposium on Global Cycles of Atmospheric Greenhouse Gases, Tohoku University, Sendai, Japan, pp. 78–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at the NOAA Aeronomy Laboratory, Boulder, Colorado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevison, C.D., Esser, G. & Holland, E.A. A global model of changing N2O emissions from natural and perturbed soils. Climatic Change 32, 327–378 (1996). https://doi.org/10.1007/BF00142468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00142468

Keywords

Navigation