Skip to main content
Log in

Development of a risk-hedging CO2-emission policy, part I: Risks of unrestrained emissions

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A rational global strategy with respect to greenhouse-gas emissions would seek to minimize total risk, which is the sum of the risk of negative impacts due to climatic change associated with a given level of emissions, and the risks associated with the process of achieving that emission level. Given the existence of reducible uncertainties in estimating these risks, and the possibility that an emission target thought to minimize total risk is later found to be not strict enough, a risk-hedging strategy is a more realistic policy objective. This paper is Part I of a two-part series in which these risks are reviewed and an interim risk-hedging emission level is proposed. Here, the risks associated with unrestrained greenhouse-gas emissions are reviewed. In particular, the carbon-cycle response to continuing CO2 emissions; the heat trapping of projected greenhouse gas increases in comparison to other anthropogenic and natural heating or cooling perturbations; the climatic response to heating perturbations; and the impacts of projected climatic change on global agriculture, forests, coastal regions, coral reefs, water resources, terrestrial species, stratospheric and tropospheric ozone, and human comfort and welfare are critically examined. It is concluded that unrestrained emissions of greenhouse gases pose real and substantial risks to human societies and to ecosystems, and that these risks are likely to grow substantially if the climate warms beyond that associated with a CO2 doubling. These risks clearly justify some action to limit emissions. The magnitude of emission restraint that is justified depends not only on the risks reviewed here, but also on the risks associated with measures to limit greenhouse-gas emissions, which are reviewed in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H.: 1989, ‘Plant Responses to Rising Carbon Dioxide and Potential Interactions with Air Pollutants’, J. Environ. Quality 19, 15–34.

    Google Scholar 

  • Ausebel, J.: 1991, ‘Does Climate Still Matter?’, Nature 350, 649–652.

    Google Scholar 

  • Austin, J. and Butchart, N.: 1994, ‘The Influence of Climate Change and the Timing of Stratospheric Warmings on Arctic Ozone Depletion’, J. Geophys. Res. 99, 1127–1145.

    Google Scholar 

  • Austin, J., Butchart, N., and Shine, K. P.: 1992, ‘Possibility of an Arctic Ozone Hole in a Doubled-CO2 Climate’, Nature 360, 221–225.

    Google Scholar 

  • Bacastow, R. and Maier-Reimer, E.: 1990, ‘Ocean-Circulation Model of the Carbon Cycle’, Clim. Dyn. 4, 95–125.

    Google Scholar 

  • Baker, J. T., Allen, L. H., and Boote, K. J.: 1992, ‘Temperature Effects on Rice at Elevated CO2 Concentration’, J. Exp. Botany 43, 959–964.

    Google Scholar 

  • Bakun, A.: 1993, ‘Global Climate Change and Intensification of Coastal Upwelling’, Science 247, 198–201.

    Google Scholar 

  • Baliunas, S. and Jastrow, R.: 1990, ‘Evidence for Long Term Brightness Changes of Solar-Type Stars’, Nature 348, 520–523.

    Google Scholar 

  • Barnes, J. D. and Pfirrmann, T.: 1992, ‘The Influence of CO2 and O3, Singly and in Combination, on Gas Exchange, Growth, and Nutrient Status of Radish (Raphanus sativus L.)’, New Phytol. 121, 403–412.

    Google Scholar 

  • Bazzaz, F. A.: 1990, ‘The Response of Natural Ecosystems to the Rising Global CO2 Levels’, Ann. Rev. Ecol. Syst. 21, 167–196.

    Google Scholar 

  • Bazzaz, F. A. and Fajer, E. D.: 1992, ‘Plant Life in a CO2-Rich World’, Sci. Am. 226, 68–74.

    Google Scholar 

  • Berner, R. A.: 1990, ‘Atmospheric Carbon Dioxide Levels over Phanerozoic Time’, Science 249, 1382–1386.

    Google Scholar 

  • Berner, R. A., Lasaga, A. C., and Garrels, R. M.: 1983, ‘The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years’, Am. J. Sci. 283, 641–683.

    Google Scholar 

  • Betts, A. K.: 1990, ‘Greenhouse Warming and the Tropical Water Budget’, Bull. Am. Meteorol. Soc. 71, 1464–1465.

    Google Scholar 

  • Billings, W. D., Luken, J. O., Mortensen, D. A., and Peterson, K. M.: 1982, ‘Arctic Tundra: A Source or Sink for Atmospheric Carbon Dioxide in a Changing Environment?’, Oecologia 53, 7–11.

    Google Scholar 

  • Bonan, G. B., Shugart, H. H., and Urban, D. L.: 1990, ‘The Sensitivity of Some High-Latitude Boreal Forests to Climatic Parameters’, Clim. Change 16, 9–29.

    Google Scholar 

  • Broecker, W. and Peng, T. H.: 1980, Tracers in the Sea, Lamont-Doherty Geological Observatory, Palisades, NY, 689 pp.

    Google Scholar 

  • Brown, S., Lugo, A. E., and Iverson, L. R.: 1992, ‘Processes and Lands for Sequestering Carbon in the Tropical Forest Landscape’, Water, Air, and Soil Pollution 64, 139–155.

    Google Scholar 

  • Budd, W. F.: 1991, ‘Antarctica and Global Change’, Clim. Change 18, 271–299.

    Google Scholar 

  • Cess, R. D., et al.: 1990, ‘Intercomparison and Interpretation of Climate Feedback Processes in Nineteen Atmospheric General Circulation Models’, J. Geophys. Res. 95, 16601–16615.

    Google Scholar 

  • Cess, R. D., et al.: 1993, ‘Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models’, Science 262, 1252–1255.

    Google Scholar 

  • Chameides, W. L., Kasibhatla, P. S., Yienger, J., and Levy II, H.: 1994, ‘Growth of Continental-Scale Metro-Agro-Plexes, Regional Ozone Pollution, and World Food Production’, Science 264, 74–77.

    Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: 1992, ‘Climate Forcing by Anthropogenic Aerosols’, Science 255, 423–430.

    Google Scholar 

  • Cline, W.: 1992, The Economics of Global Warming, Institute for International Economics, Washington, 399 pp.

    Google Scholar 

  • Cohen, S. J.: 1986, ‘Impacts of CO2Induced Climatic Change on Water Resources in the Great Lakes Basin’, Clim. Change 8, 135–153.

    Google Scholar 

  • Croley II, T. E.: 1990, ‘Laurentian Great Lakes Double-CO2 Climate Change Hydrological Impacts’, Clim. Change 17, 27–47.

    Google Scholar 

  • Crowley, T. J.: 1990, ‘Are There Any Satisfactory Geologic Analogs for a Future Greenhouse Warming?’, J. Clim. 3, 1282–1292.

    Google Scholar 

  • Davis, M. B.: 1989, ‘Lags in Vegetation Response to Greenhouse Warming’, Clim. Change 15, 75–82.

    Google Scholar 

  • del Genio, A., Lacis, A. A., and Ruedy, R. A.: 1991, ‘Simulations of the Effect of a Warmer Climate on Atmospheric Humidity’, Nature 351, 382–385.

    Google Scholar 

  • del Genio, A. D., Kovari, W., and Yao, M.-S.: 1994, ‘Climatic Implications of the Seasonal Variation of Upper Tropospheric Water Vapor’, Geophys. Res. Lett. 21, 2701–2704.

    Google Scholar 

  • Diaz, S., Grime, J. P., Harris, J., and McPherson, E.: 1993, ‘Evidence of a Feedback Mechanism Limiting Plant Response to Elevated Carbon Dioxide’, Nature 364, 616–617.

    Google Scholar 

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., and Wisniewski, J.: 1994, ‘Carbon Pools and Flux of Global Forest Ecosystems’, Science 263, 185–190.

    Google Scholar 

  • Drake, B. G.: 1992, ‘The Impact of Rising CO2 on Ecosystem Production’, Water, Air, and Soil Pollution 64, 25–44.

    Google Scholar 

  • Drury, S. and Evans, J.-L.: 1993, ‘Sea Surface Temperature and CAPE: Importance for Tropical Cyclone Intensity’, Proceedings of the 20th Hurricanes and Tropical Meteorology Conference, 10–14 May 1993, San Antonio (Texas), American Meteorological Society, Boston, pp. 89–92.

    Google Scholar 

  • Easterling, W. E., III, Crosson, P. R., Rosenberg, N. J., McKenney, M. S., Katz, L. A., and Lemon, K. M.: 1993, ‘Agricultural Impacts of and Responses to Climate Change in the Missouri-Iowa-Nebraska-Kansas (MINK) Region’, Clim. Change 24, 23–61.

    Google Scholar 

  • Ehrlich, P. R. and Daily, G. C.: 1993, ‘Population Extinction and Saving Biodiversity’, Ambio 22, 64–68.

    Google Scholar 

  • Emanuel, K. A.: 1988, ‘The Maximum Intensity of Hurricanes’, J. Atmos. Sci. 45, 1143–1155.

    Google Scholar 

  • Evans, J.-L.: 1993, ‘Sensitivity of Tropical Cyclone Intensity to Sea Surface Temperature’, J. Clim. 6, 1133–1140.

    Google Scholar 

  • Flohn, H. and Kapala, A.: 1989, ‘Changes in Tropical Sea-Air Interaction Processes over a 30-Year Period’, Nature 338, 244–246.

    Google Scholar 

  • Francois, L. M. and Walker, J. C. G.: 1992, ‘Modelling the Phanerozoic Carbon Cycle and Climate: Constraints from the 87Sr/86Sr Isotopic Ratio of Seawater’, Am. J. Sci. 292, 81–135.

    Google Scholar 

  • Gaffen, D. J., Elliott, W. P., and Robock, A.: 1992, ‘Relationship between Tropospheric Water Vapor and Surface Temperature as Observed by Radiosondes’, Geophys. Res. Lett. 19, 1839–1842.

    Google Scholar 

  • Gates, W. L., Mitchell, J. F. B., Boer, G. J., Cubasch, U., and Meleshko, V. P.: 1992, ‘Climate Modelling, Climate Prediction and Model Validation’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 97–134.

    Google Scholar 

  • Gifford, R. M.: 1992, ‘Interaction of Carbon Dioxide with Growth-Limiting Environmental Factors in Vegetation Productivity: Implications for the Global Carbon Cycle’, Adv. Bioclimatol. 1, 24–58.

    Google Scholar 

  • Gleick, P.: 1987, ‘Regional Hydrologie Consequences of Increases in Atmospheric CO2 and Other Trace Gases’, Clim. Change 10, 137–161.

    Google Scholar 

  • Gordon, H. B., Whetton, P. H., Pittock, A. B., Fowler, A. M., and Haylock, M. R.: 1992, ‘Simulated Changes in Daily Rainfall Intensity Due to the Enhanced Greenhouse Effect: Implications for Extreme Rainfall Events’, Clim. Dyn. 8, 83–102.

    Google Scholar 

  • Gorham, E.: 1991, ‘Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming’, Ecol. Appl. 1, 182–195.

    Google Scholar 

  • Gornitz, V: 1991, ‘Global Coastal Hazards from Future Sea Level Rise’, Palaeogeogr. Palaeoclim. Palaeoecol. 89, 379–398.

    Google Scholar 

  • Graham, N. E.: 1995, ‘Simulation of Recent Global Temperature Trends’, Science 267, 666–671.

    Google Scholar 

  • Gutzler, D. S.: 1992, ‘Climatic Variability of Temperature and Humidity over the Tropical Western Pacific’, Geophys. Res. Lett. 19, 1595–1598.

    Google Scholar 

  • Hall, N. M. J., Hoskins, B. J., and Valdes, P. J., and Senior, C. A.: 1994, ‘Storm Tracks in a High-Resolution GCM with Doubled Carbon Dioxide’, Q. J. R. Meteorol. Soc. 120, 1209–1230.

    Google Scholar 

  • Hansen, J., Sato, M., and Ruedy, R.: 1995, ‘Long-Term Changes in the Diurnal Temperature Cycle: Implications About Mechanisms of Global Climate Change’, Atmos. Res. 37, 175–209.

    Google Scholar 

  • Harvey, L. D. D.: 1989, ‘Managing Atmospheric CO2’, Clim. Change 15, 343–381.

    Google Scholar 

  • Harvey, L. D. D.: 1991, ‘Comments on “The Aerial Fertilization Effect of CO2 and Its Implications for Global Carbon Cycling and Maximum Greenhouse Warming” by S. B. Idso’, Bull. Am. Meteorol. Soc. 72, 1905–1907.

    Google Scholar 

  • Harvey, L. D. D.: 1992, ‘A Two-Dimensional Ocean Model for Long-Term Climatic Simulations: Stability and Coupling to Atmospheric and Sea Ice Models’, J. Geophys. Res. 97, 9435–9453.

    Google Scholar 

  • Harvey, L. D. D.: 1994, ‘Transient Temperature and Sea Level Response of a Two-Dimensional Ocean-Climate Model to Greenhouse Gas Increases’, J. Geophys. Res. 99, 18447–18466.

    Google Scholar 

  • Harvey, L. D. D.: 1996a, ‘Risk Minimizing CO2 Emission Policy, Part II: Risks Associated with Measures to Reduce Emissions, Synthesis, and Conclusions’, Clim. Change 34, 41–71 (this issue).

    Google Scholar 

  • Harvey, L. D. D.: 1996b, ‘An Investigation of the Interactive Effect on Climate Sensitivity of Water Vapor, Lapse Rate, and Cloud Height Feedbacks’, J. Climate (submitted).

  • Harvey, L. D. D. and Huang, Z.: 1995, ‘An Evaluation of the Potential Impact of Methane-Clathrate Destabilization on Future Global Warming’, J. Geophys. Res. 100, 2905–2926.

    Google Scholar 

  • Henderson-Sellers, A., McGuffie, K., and Gross, C.: 1995, ‘Sensitivity of Global Climate Model Simulations to Increased Stomatal Resistance and CO2 Increases’, J. Clim. 8, 1738–1756.

    Google Scholar 

  • Hense, A., Krahe, P., and Flohn, H.: 1988, ‘Recent Fluctuations of Tropospheric Temperature and Water Vapour Content in the Tropics’, Meteorol. Atmos. Phys. 38, 215–227.

    Google Scholar 

  • Hoffert, M. I. and Covey, C.: 1992, ‘Deriving Global Climate Sensitivity from Paleoclimate Reconstructions’, Nature 360, 573–576.

    Google Scholar 

  • Hoffert, M. I., Frei, A., and Narayanan, V. K.: 1988, ‘Application of Solar Max Acrim Data to Analysis of Solar-Driven Climatic Variability on Earth’, Clim. Change 13, 267–286.

    Google Scholar 

  • Hohmeyer, O. and Gartner, M.: 1992, The Costs of Climate Change: A Rough Estimate of Orders of Magnitude, Fraunhofer Institute for Systems and Innovation Research, 60 pp.

  • Hong, N. P.: 1993, ‘Climate and the Mangrove Ecosystem’, Tiempo Issue 10, 11–14.

    Google Scholar 

  • Idso, S.: 1991, ‘The Aerial Fertilization Effect of CO2 and Its Implications for Global Carbon Cycling and the Maximum Greenhouse Warming’, Bull. Am. Meteorol. Soc. 72, 962–965.

    Google Scholar 

  • Inamdar, A. K. and Ramanathan, V.: 1994, ‘Physics of Greenhouse Effect and Convection in Warm Oceans’, J. Clim. 7, 715–731.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change): 1992, Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Houghton, J. T., Callander, B. A. and Varney, S. K. (eds.), Cambridge University Press, Cambridge, 200 pp.

    Google Scholar 

  • Jarvis, P. G. and McNaughton, K. G.: 1986, ‘Stomatal Control of Transpiration: Scaling Up from Leaf to Region’, Adv. Ecol. Res. 15, 1–48.

    Google Scholar 

  • Jenkinson, D. S., Adams, D. E., and Wild, A.: 1991, ‘Model Estimates of CO2 Emissions from Soil in Response to Global Warming’, Nature 351, 304–306.

    Google Scholar 

  • Kalkstein, L. S.: 1991, ‘Global Warming and Human Health: What Are the Possibilities?’, in Majumdar, S. K., Miller, E. W., and Cahir, J. (eds.), Air Pollution: Environmental Issues and Health Effects, Pennsylvania Academy of Sciences, Easton, pp. 351–360.

    Google Scholar 

  • Kane, S., Reilly, J., and Tobey, J.: 1992, ‘An Empirical Study of the Economic Effects of Climate Change on World Agriculture’, Clim. Change 21, 17–35.

    Google Scholar 

  • Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K. P., Lindseay, J., Charlson, R. J., and Peterson, T. C.: 1993, ‘A New Perspective on Recent Global Warming’, Bull. Am. Meteorol. Soc. 74, 1007–1023.

    Google Scholar 

  • Kaufman, Y. J., Fraser, R. S., and Mahoney, R. L.: 1991, ‘Fossil Fuel and Biomass Burning Effect on Climate - Heating or Cooling?’, J. Clim. 4, 578–588.

    Google Scholar 

  • Kellogg, W. W. and Zhao, Z.-C.: 1988, ‘Sensitivity of Soil Moisture to Doubling of Carbon Dioxide in Climate Model Experiments, Part I: North America’, J. Clim. 1, 348–366.

    Google Scholar 

  • Kelly, P. M. and Wigley, T. M. L.: 1990, ‘The Influence of Solar Forcing on Global Mean Temperature Since 1861’, Nature 347, 460–462.

    Google Scholar 

  • Kelly, P. M. and Wigley, T. M. L.: 1992, ‘Solar Cycle Length, Greenhouse Forcing and Global Climate’, Nature 360, 328–330.

    Google Scholar 

  • Kempton, W.: 1991, ‘Lay Perspectives on Global Climate Change’, Global Environ. Change: Human and Policy Dimensions 1, 183–208.

    Google Scholar 

  • Kempton, W. and Craig, P. P.: 1993,‘European Perspectives on Global Climate Change’, Environment 35, 16–20, 41–45.

    Google Scholar 

  • Kennedy, V. S.: 1990, ‘Anticipated Effects of Climate Change on Estuarine and Coastal Fisheries’, Fisheries 15, 15–24.

    Google Scholar 

  • Lapenis, A. G. and Shabalova, M. V.: 1994, ‘Global Climate Changes and Moisture Conditions in the Intracontinental Arid Zones’, Clim. Change 27, 259–297.

    Google Scholar 

  • LeBlanc, D. C. and Foster, J. R.: 1992, ‘Predicting Effects of Global Warming on Growth and Mortality of Upland Oak Species in the Midwestern United States: A Physiologically Based Dendroecological Approach’, Can. J. For. Res. 22, 1739–1752.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J.: 1992, ‘Indirect Chemical Effects of Methane on Climate Warming’, Nature 355, 339–341.

    Google Scholar 

  • Lighthill, J., et al.: 1994, ‘Global Climate Change and Tropical Cyclones’, Bull. Am. Meteorol. Soc. 75, 2147–2157.

    Google Scholar 

  • Lindzen, R.: 1990, ‘Some Coolness Concerning Global Warming’, Bull. Am. Meteorol. Soc. 71, 288–299.

    Google Scholar 

  • Mabey, N., Hall, S., Smith, C., and Gupta, S.: 1996, Argument in the Greenhouse: The International Economics of the Greenhouse Effect, Routledge, London, in press.

    Google Scholar 

  • Mahfouf, J. F., Cariolle, D., Royer, J.-F., Geleyn, J.-F., and Timbal, B.: 1994, ‘Response of the Meteo-France Climate Model to Changes in CO2 and Sea Surface Temperature’, Clim. Dyn. 9, 345–362.

    Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1994, ‘Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide’, J. Clim. 7, 5–23.

    Google Scholar 

  • Martens, W. J. M., Rotmans, J., and Niessen, L. W.: 1994, Climate Change and Malaria Risk: An Integrated Modelling Approach, Global Dynamics and Sustainable Development Programme GLOBO Report Series No. 3, National Institute of Public Health and Environmental Protection, The Netherlands, 37 pp.

    Google Scholar 

  • McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moore III, B., and Vorosmarty, C. J.: 1992, ‘Interactions between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America’, Global Biogeochem. Cycles 6, 101–124.

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C., and Goldberg, R.: 1992, ‘Effect of Changes in Interannual Climatic Variability on CERES-Wheat Yields: Sensitivity and 2 × CO2 general circulation model studies’, Agricult. For. Meteorol. 62, 159–189.

    Google Scholar 

  • Meehl, G. A. and Washington, W. M.: 1988, ‘A Comparison of Soil-Moisture Sensitivity in Two Global Climate Models’, J. Atmos. Sci. 45, 1476–1492.

    Google Scholar 

  • Meehl, G. A., Branstator, G. W., and Washington, W. M.: 1993, ‘Tropical Pacific Interannual Variability and CO2 Climate Change’, J. Clim. 6, 42–63.

    Google Scholar 

  • Miller, G. H. and de Vernal, A.: 1992, ‘Will Greenhouse Warming Lead to Northern Hemisphere Ice-Sheet Growth?’, Nature 355, 244–246.

    Google Scholar 

  • Mitchell, J. F. B. and Warrilow, D. A.: 1987, ‘Summer Dryness in Northern Mid-Latitudes Due to Increased CO2’, Nature 330, 238–240.

    Google Scholar 

  • Mitchell, J. F. B., Manabe, S., Meleshko, V., and Tokioka, T.: 1990, ‘Equilibrium Climate Change -and Its Implications for the Future’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 131–172.

    Google Scholar 

  • Mopper, K., Zhou, X., Kieber, R. J., Kieber, D. J., Sikorski, R. J., and Jones, R. D.: 1991, ‘Photochemical Degradation of Dissolved Organic Carbon and Its Impact on the Oceanic Carbon Cycle’, Nature 353, 60–62.

    Google Scholar 

  • Norby, R. J., Gunderson, C. A., Wullschleger, S. D., O'Neill, E. G., and MacCracken, M. K.: 1992, ‘Productivity and Compensatory Response of Yellow-Poplar Trees in Elevated CO2’, Nature 357, 322–324.

    Google Scholar 

  • Nordhaus, W. D.: 1992, ‘An Optimal Transition Path for Controlling Greenhouse Gases’, Science 258, 1315–1319.

    Google Scholar 

  • Oechel, W. C. and Strain, B. R.: 1985, ‘Native Species Responses to Increased Atmospheric Carbon Dioxide Concentration’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation, U.S. Dept. Energy, DOE/ER-0238, Washington, pp. 117–154.

  • Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riechers, G., and Grulke, N.: 1993, ‘Recent Change of Arctic Tundra Ecosystems from a Net Carbon Dioxide Sink to a Source’, Nature 361, 520–523.

    Google Scholar 

  • Overpeck, J. T., Rind, D., and Goldberg, R.: 1990, ‘Climate-Induced Changes in Forest Disturbance and Vegetation’, Nature 343, 51–53.

    Google Scholar 

  • Pachauri, R. K.: 1992, ‘Global Warming: Impacts and Implications for South Asia’, Tisglow 3, 1–13.

    Google Scholar 

  • Parry, M.: 1990, Climate Change and Agriculture, Earthscan, London, 157 pp.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1988, ‘Response of Northern Forests to CO2-Induced Climate Change’, Nature 334, 55–58.

    Google Scholar 

  • Peck, S. C. and Teisberg, T. J.: 1992, ‘CETA: A Model for Carbon Emissions Trajectory Assessment’, The Energy J. 13, 55–77.

    Google Scholar 

  • Penner, J. E., Dickinson, R. E., and O'Neill, C. A.: 1992, ‘Effects of Aerosol from Biomass Burning on the Global Radiation Budget’, Science 256, 1432–1434.

    Google Scholar 

  • Pilinis, C., Pandis, S. N., and Seinfeld, J. H.: 1995, ‘Sensitivity of Direct Climate Forcing by Atmospheric Aerosols to Aerosol Size and Composition’, J. Geophys. Res. 100, 18739–18754.

    Google Scholar 

  • Poiani, K. A. and Johnson, W. C.: 1993, ‘Potential Effects of Climate Change on a Semi-Permanent Prairie Wetland’, Clim. Change 24, 213–232.

    Google Scholar 

  • Post, W. M., Pastor, J., King, A. W., and Emanuel, W. R.: 1992, ‘Aspects of the Interaction between Vegetation and Soil under Global Change’, Water, Air, and Soil Pollution 64, 345–363.

    Google Scholar 

  • Ramaswamy, V., Schwartzkopf, M. D., and Shine, K. P.: 1992, ‘Radiative Forcing of Climate from Halocarbon-Induced Global Stratospheric Ozone Loss’, Nature 355, 810–812.

    Google Scholar 

  • Rastetter, E. B., McKane, R. B., Shaver, G. R., and Melillo, J. M.: 1992, ‘Changes in C Storage by Terrestrial Ecosystems: How C-N Interactions Restrict Responses to CO2 and Temperature’, Water, Air, and Soil Pollution 64, 327–344.

    Google Scholar 

  • Reed, D. D. and Desanker, P. V.: 1992, ‘Ecological Implications of Projected Climate Change Scenarios in Forest Ecosystems in Northern Michigan, USA’, Int. J. Biometeorol. 36, 99–107.

    Google Scholar 

  • Reid, G. C.: 1991, ‘Solar Total Irradiance Variations and the Global Sea Surface Temperature Record’, J. Geophys. Res. 96, 2835–2844.

    Google Scholar 

  • Reid, W. V. and Trexler, M. C.: 1992, ‘Responding to Potential Impacts of Climate Change on U.S. Coastal Biodiversity’, Coastal Management 20, 117–142.

    Google Scholar 

  • Rind, D., Chiou, E.-W., Chu, W., Larsen, J., Oltmans, S., Lerner, J., McCormick, M. P., and McMaster, L.: 1991, ‘Positive Water Vapour Feedback in Climate Models Confirmed by Satellite Data’, Nature 349, 500–503.

    Google Scholar 

  • Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., and Ruedy, R.: 1990, ‘Potential Evapotranspiration and the Likelihood of Future Drought’, J. Geophys. Res. 95, 9983–10004.

    Google Scholar 

  • Roberts, L.: 1990, ‘Warm Waters, Bleached Corals’, Science 250, 213.

    Google Scholar 

  • Roberts, L.: 1991, ‘Greenhouse Role in Reef Stress Unproven’, Science 253, 258–259.

    Google Scholar 

  • Rosenzweig, C., Parry, M. L., Fischer, G., and Frohberg, K.: 1993, Climate Change and World Food Supply, Research Report No. 3, Environmental Change Unit, University of Oxford, 28 pp.

  • Rosenzweig, C. and Parry, M. L.: 1994, ‘Potential Impact of Climate Change on World Food Supply’, Nature 367, 133–138.

    Google Scholar 

  • Rouviere, C., Williams, T., Ball, R., Shinyak, Y., Topping, J., Nishioka, S., Ando, M., and Okita, T.: 1990, ‘Human Settlement; the Energy, Transport and Industrial Sectors; Human Health; Air Quality, and Changes in Ultraviolet-B Radiation’, in Potential Impacts of Climate Change, Report Prepared for IPCC by Working Group II, World Meteorological Organization and United Nations Environment Programme, Chapter 5, 62 pp.

  • Ryan, M.G.: 1991, ‘Effects of Climate Change on Plant Respiration’, Ecol. Appl. 1, 157–167.

    Google Scholar 

  • Sand, P.: 1991, ‘Lessons Learned in Global Environmental Governance’, Boston College Environmental Affairs Law Review 18, 213–277.

    Google Scholar 

  • Schlesinger, M. E. and Ramankutty, N.: 1992, ‘Implications for Global Warming of Intercycle Solar Irradiance Variations’, Nature 360, 330–333.

    Google Scholar 

  • Schlesinger, M. E. and Ramankutty, N.: 1994, ‘An Oscillation in the Global Climate System of Period 65–70 Years’, Nature 367, 723–726.

    Google Scholar 

  • Schneider, S. H.: 1992, ‘Will Sea Levels Rise or Fall?’, Nature 356, 11.

    Google Scholar 

  • Schoenwise, C.-D., Ullrich, R., Beck, F., and Rapp, J.: 1994, ‘Solar Signals in Global Climatic Change’, Clim. Change 27, 259–281.

    Google Scholar 

  • Schwartz, M. W.: 1992a, ‘Modelling Effects of Habitat Fragmentation on the Ability of Trees to Respond to Climatic Warming’, Biodiversity and Conservation 2, 51–61.

    Google Scholar 

  • Schwarte, M. W.: 1992b, ‘Potential Effects of Global Climate Change on the Biodiversity of Plants’, The Forestry Chronicle 68, 462–471.

    Google Scholar 

  • Senior, C. A. and Mitchell, J. F. B.: 1993, ‘Carbon Dioxide and Climate: The Impact of Cloud Parameterization’, J. Clim. 6, 393–418.

    Google Scholar 

  • Shaffer, G.: 1993, ‘Effects of the Marine Biota on Global Carbon Cycling’, in Heimman, M. (ed.), The Global Carbon Cycle, Springer, Berlin, pp. 431–456.

    Google Scholar 

  • Shine, K. P., Derwent, R. G., Wuebbles, D. J., and Morcrette, J.-J.: 1990, ‘Radiative Forcing of Climate’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 41–68.

    Google Scholar 

  • Siegenthaler, U. and Sarmiento, J. L.: 1993, ‘Atmospheric Carbon Dioxide and the Ocean’, Nature 365, 119–125.

    Google Scholar 

  • Sinha, A. and Allen, M. R.: 1994, ‘Climate Sensitivity and Tropical Moisture Distribution’, J. Geophys. Res. 99, 3707–3716.

    Google Scholar 

  • Smith, S. V. and Buddemeier, R. W.: 1992, ‘Global Change and Coral Reef Ecosystems’, Annu. Rev. Ecol. Syst. 23, 89–118.

    Google Scholar 

  • Soden, B. J., and Fu, R.: 1995, ‘A Satellite Analysis of Deep Convection, Upper-Troposheric Humidity, and the Greenhouse Effect’, J. Clim. 8, 2333–2351.

    Google Scholar 

  • Solomon, A. M.: 1986, ‘Transient Response of Forests to CO2-Induced Climate Change: Simulation Modeling Experiments in Eastern North America’, Oecologia 68, 567–579.

    Google Scholar 

  • Solomon, A. M. and Bartlein, P. J.: 1992, ‘Past and Future Climate Change: Response by Mixed Deciduous-Coniferous Forest Ecosystems in Northern Michigan’, Can. J. For. Res. 22, 1727–1738.

    Google Scholar 

  • Stouffer, R. J., Manabe, S., and Vinnikov, K. Ya.: 1994, ‘Model Assessment of the Role of Natural Variability in Recent Global Warming’, Nature 367, 634–636.

    Google Scholar 

  • Sun, D.-Z. and Lindzen, R. S.: 1993, ‘Distribution of Tropical Tropospheric Water Vapor’, J. Atmos. Sci. 50, 1643–1660.

    Google Scholar 

  • Sundquist, E. T.: 1985, ‘Geological Perspectives on Carbon Dioxide and the Carbon Cycle’, in Sundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophysical Monograph 32, American Geophysical Union, Washington, pp. 5–59.

    Google Scholar 

  • Taylor, K. E. and Ghan, S. J.: 1992, ‘An Analysis of Cloud Liquid Water Feedback and Global Climate Sensitivity in a General Circulation Model’, J. Clim. 5, 907–919.

    Google Scholar 

  • Titus, J. G., Park, R. A., Leatherman, S. P., Weggel, J. R., Greene, M. S., Mausel, P. W., Brown, S., Gaunt, C., Trehan, M., and Yohe, G.: 1991, ‘Greenhouse Effect and Sea Level Rise: The Cost of Holding Back the Sea’, Coastal Management 19, 171–204.

    Google Scholar 

  • Townsend, A. R., Vitousek, P. M., and Holland, E. A.: 1992, ‘Tropical Soils Could Dominate the Short-Term Carbon Cycle Feedbacks to Increased Global Temperatures’, Clim. Change 22, 293–303.

    Google Scholar 

  • Watson, R. T., Meira Filho, L. G., Sanhueza, E., and Janetos, A.: 1992, ‘Greenhouse Gases: Sources and Sinks’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 25–46.

    Google Scholar 

  • Whalen, S. C. and Reeburgh, W. S.: 1990, ‘Consumption of Atmospheric Methane by Tundra Soils’, Nature 346, 160–162.

    Google Scholar 

  • Whiting, G. J. and Chanton, J. P.: 1993, ‘Primary Production Control of Methane Emission from Wetlands’, Nature 364, 794–795.

    Google Scholar 

  • Wigley, T. M. L.: 1993, ‘Balancing the Carbon Budget. Implications for Projections of Future Carbon Dioxide Concentration Changes’, Tellus 45B, 409–425.

    Google Scholar 

  • Williams, G. D. V.: 1985, ‘Estimated Bioresource Sensitivity to Climatic Change in Alberta, Canada’, Clim. Change 7, 55–69.

    Google Scholar 

  • Wolfe, D. W. and Erickson, J. D.: 1993, ‘Carbon Dioxide Effects on Plants: Uncertainties and Implications for Modelling Crop Response to Climate Change’, in Kaiser, H. M. and Drennen, T. E. (eds.), Agricultural Dimensions of Global Change, St. Lucie Press, Delray Beach, FL, pp. 153–178.

    Google Scholar 

  • Woodwell, G. M.: 1990, ‘The Effects of Global Warming’, in Leggett, J. (ed.), Global Warming: The Greenpeace Report, Oxford University Press, Oxford, pp. 116–132.

    Google Scholar 

  • World Wildlife Fund: 1992, Can Nature Survive Global Warming?, World Wildlife Fund, Gland, Switzerland, 59 pp.

    Google Scholar 

  • Wullschleger, S. D., Ziska, L. H., and Bunce, J. A.: 1994, ‘Respiratory Responses of Higher Plants to Atmospheric CO2 Enrichment’, Physiol. Plant. 90, 221–229.

    Google Scholar 

  • Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R., and Randlett, D. L.: 1993, ‘Elevated Atmospheric CO2 and Feedback between Carbon and Nitrogen Cycles’, Plant and Soil 151, 105–117.

    Google Scholar 

  • Zhao, Z.-C. and Kellogg, W. W.: 1988, ‘Sensitivity of Soil Moisture to Doubling of Carbon Dioxide in Climate Model Experiments, Part II: The Asian Monsoon Region’, J. Clim. 1, 367–378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, L.D.D. Development of a risk-hedging CO2-emission policy, part I: Risks of unrestrained emissions. Climatic Change 34, 1–40 (1996). https://doi.org/10.1007/BF00139252

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00139252

Keywords

Navigation