Skip to main content
Log in

Optimal convergence properties of kernel density estimators without differentiability conditions

  • Kernel Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let X 1, X 2, ..., X n be independent observations from an (unknown) absolutely continuous univariate distribution with density f and let % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GabmOzayaajaGaaiikaiaadIhacaGGPaGaeyypa0Jaaiikaiaad6ga% caWGObGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqadaba% Gaam4saiaacUfadaWcgaqaaiaacIcacaWG4bGaeyOeI0Iaamiwamaa% BaaaleaacaWGPbaabeaakiaacMcaaeaacaWGObGaaiyxaaaaaSqaai% aadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa!5356!\[\hat f(x) = (nh)^{ - 1} \sum\nolimits_{i = 1}^n {K[{{(x - X_i )} \mathord{\left/ {\vphantom {{(x - X_i )} {h]}}} \right. \kern-\nulldelimiterspace} {h]}}} \] be a kernel estimator of f(x) at the point x, \s-∞<x<∞, with h=h n (h n →O and nh n →∞, as n→∞) the bandwidth and K a kernel function of order r. “Optimal” rates of convergence to zero for the bias and mean square error of such estimators have been studied and established by several authors under varying conditions on K and f. These conditions, however, have invariably included the assumption of existence of the r-th order derivative for f at the point x. It is shown in this paper that these rates of convergence remain valid without any differentiability assumptions on f at x. Instead some simple regularity conditions are imposed on the density f at the point of interest. Our methods are based on certain results in the theory of semi-groups of linear operators and the notions and relations of calculus of “finite differences”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett, M. S. (1963). Statistical estimation of density functions, Sankhyā Ser. A, 25, 245–254.

    Google Scholar 

  • Butzer, P. L. and Berens, H. (1967). Semi-Groups of Operators and Approximation, Springer, New York.

    Google Scholar 

  • Davis, K. B. (1975). Mean square error properties of density estimates, Ann. Statist., 3, 1025–1030.

    Google Scholar 

  • Devroye, L. and Györfi, L. (1985). Nonparametric Density Estimation: L 1-view, Wiley, New York.

    Google Scholar 

  • Farrell, R. H. (1972). On best obtainable asymptotic rates of convergence in estimation of a density function at a point, Ann. Math. Statist., 43, 170–180.

    Google Scholar 

  • Hardy, G. H. (1955). A Course of Pure Mathematics, The University Press, Cambridge.

    Google Scholar 

  • Hewitt, E. and Stromberg, K. (1965). Real and Abstract Analysis, Springer, New York.

    Google Scholar 

  • Hille, E. (1944). Functional Analysis and Semi-groups, American Mathematical Society Publication, New York.

    Google Scholar 

  • Ibiragimov, I. A. and Has'minski, R. Z. (1981). Statistical Estimation, Springer, New York.

    Google Scholar 

  • Johns, M. V. and Van Ryzin, J. (1972). Convergence rates for empirical Bayes two-action problems II. Continuous case, Ann. Math. Statist., 43, 934–947.

    Google Scholar 

  • Karunamuni, R. J. and Mehra, K. L. (1990). Improvements on strong uniform consistency of some known kernel estimates of a density and its derivatives, Statist. Probab. Lett., 9, 133–140.

    Google Scholar 

  • Lehmann, E. L. (1983). Theory of Point Estimation, Wiley, New York.

    Google Scholar 

  • Loh, W.-Y. (1984). Bounds on ARE's for restricted classes of distributions defined via tailordering, Ann. Statist., 12, 685–701.

    Google Scholar 

  • Müller, H. G. (1984). Smooth kernel estimators of densities, regression curves and modes, Ann. Statist., 12, 766–774.

    Google Scholar 

  • Müller, H. G. and Gasser, T. (1979). Optimal convergence properties of kernel estimates of derivatives of densities, Smoothing Techniques for Curve Estimation (Proceedings) (eds. T. Gasser and M. Rosenblatt), 144–154, Springer, New York.

    Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density function and mode, Ann. Math. Statist., 33, 1065–1076.

    Google Scholar 

  • Rosenblatt, M. (1971). Curve estimates, Ann. Math. Statist., 42, 1815–1842.

    Google Scholar 

  • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York.

    Google Scholar 

  • Singh, R. S. (1974). Estimation of derivatives of average of densities and sequence-compound estimation in exponential families, Research Memo. RM-18, Dept. of Statistics and Probability, Michigan State University.

  • Singh, R. S. (1977). Improvement on some known nonparametric uniformly consistent estimators of derivatives of a density, Ann. Statist., 5, 394–399.

    Google Scholar 

  • Singh, R. S. (1978). Nonparametric estimation of derivatives of average of μ-densities with covergence rates and applications, SIAM J. Appl. Math., 35, 637–649.

    Google Scholar 

  • Singh, R. S. (1979). Empirical Bayes estimation in Lebesgue-exponential families with rates near the best possible rate, Ann. Statist., 7, 890–902.

    Google Scholar 

  • Tapia, R. A. and Thompson, J. R. (1978). Nonparametric Probability Density Estimation, Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  • Wahba, G. (1975). Optimal convergence properties of variable knot, kernel and orthogonal-series methods for density estimation, Ann. Statist., 3, 15–29.

    Google Scholar 

  • Yamato, H. (1972). Some statistical properties of estimators of density and distribution functions, Bull. Math. Statist., 19, 113–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada and the University of Alberta Central Research Fund.

About this article

Cite this article

Karunamuni, R.J., Mehra, K.L. Optimal convergence properties of kernel density estimators without differentiability conditions. Ann Inst Stat Math 43, 327–346 (1991). https://doi.org/10.1007/BF00118639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118639

Key words and phrases

Navigation