Skip to main content
Log in

Frequency domain characteristics of linear operator to decompose a time series into the multi-components

  • Time Series
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Frequency domain properties of the operators to decompose a time series into the multi-components along the Akaike's Bayesian model (Akaike (1980, Bayesian Statistics, 143–165, University Press, Valencia, Spain)) are shown. In that analysis a normal disturbance-linear-stochastic regression prior model is applied to the time series. A prior distribution, characterized by a small number of hyperparameters, is specified for model parameters. The posterior distribution is a linear function (filter) of observations. Here we use frequency domain analysis or filter characteristics of several prior models parametrically as a function of the hyperparameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, 2nd International Symposium on Information Theory (eds. B. N. Petrov and F. Csáki), 267–281, Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Akaike, H. (1980). Likelihood and the Bayes procedure (with discussion), Bayesian Statistics, 143–165, University Press, Valencia, Spain.

    Google Scholar 

  • Akaike, H. and Ishiguro, M. (1983). Comparative study of the X-11 and BAYSEA procedures of seasonal adjustment, Applied Time Series Analysis of Economic Data (ed. A. Zellner), 17–53, U.S. Department of Commerce, Bureau of the Census, Washington, D.C.

    Google Scholar 

  • Fukao, Y. and Suda, N. (1989). Core modes of the earth's free oscillations and structure of the inner core, Geophysical Research Letter, 16, 401–404.

    Google Scholar 

  • Gersch, W. and Kitagawa, G. (1983). The prediction of time series with trends and seasonalities, J. Business & Economic Statistics, 1, 253–264.

    Google Scholar 

  • Gersch, W. and Kitagawa, G. (1988). Smoothness priors in time series, Bayesian Analysis of Time Series and Dynamic Models (ed. J. C. Spall), 431–476, Dekker, New York and Basel.

    Google Scholar 

  • Gersch, W. and Kitagawa, G. (1989). Smoothness priors transfer function estimation, Automatica—J. IFAC, 25, 603–608.

    Google Scholar 

  • Good, I. J. (1964). The Estimation of Probabilities, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Good, I. J. and Gaskin, R. A. (1971). Non-parametric roughness penalties for probability densities, Biometrika, 58, 255–277.

    Google Scholar 

  • Good, I. J. and Gaskin, R. A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data (with discussion), J. Amer. Statist. Assoc., 75, 42–73.

    Google Scholar 

  • Green, P. J. (1987). Penalized likelihood for general semi-parametric regression models, Internat. Statist. Rev., 55, 245–259.

    Google Scholar 

  • Higuchi, T., Kita, K. and Ogawa, T. (1988). Bayesian statistical inference to remove periodic noise in the optical observations aboard a spacecraft, Applied Optics, 27, 4514–4519.

    Google Scholar 

  • Ishiguro, M. (1984). Computationally efficient implementation of a Bayesian seasonal adjustment procedure, J. Time Ser. Anal., 5, 245–253.

    Google Scholar 

  • Ishiguro, M. and Arahata, E. (1982). A Bayesian spline regression, Proc. Inst. Statist. Math., 30, 29–36 (in Japanese).

    Google Scholar 

  • Ishiguro, M. and Sakamoto, Y. (1983). A Bayesian approach to binary response curve estimation, Ann. Inst. Statist. Math., 35, 115–137.

    Google Scholar 

  • Ishiguro, M. and Sakamoto, Y. (1984). A Bayesian approach to the probability density estimation, Ann. Inst. Statist. Math., 36, 523–538.

    Google Scholar 

  • Karl, J. H. (1989). An Introduction of Digital Signal Processing, Academic Press, San Diego.

    Google Scholar 

  • Kashiwagi, N. (1982). Estimation of fertilities in field experiments, Proc. Inst. Statist. Math., 30, 1–10 (in Japanese).

    Google Scholar 

  • Kay, S. M. and Marple, S. L. Jr. (1989). Spectrum analysis—A modern perspective, Proc. IEEE, 69, 1380–1419.

    Google Scholar 

  • Kita, K., Higuchi, T. and Ogawa, T. (1989). Bayesian statistical inference of airglow profiles from rocket observational data: comparison with conventional methods, Planet Space Science, 37, 1327–1331.

    Google Scholar 

  • Kitagawa, G. (1981). A nonstationary time series model and its fitting by a recursive filter, J. Time Ser. Anal., 2, 103–116.

    Google Scholar 

  • Kitagawa, G. (1983). Changing spectrum estimation, J. Sound Vibration, 89, 433–445.

    Google Scholar 

  • Kitagawa, G. (1986). Decomposition of a nonstationary time series—An introduction of the program DECOMP, Proc. Inst. Statist. Math., 34, 255–271 (in Japanese).

    Google Scholar 

  • Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series (with discussion), J. Amer. Statist. Assoc., 79, 1032–1063.

    Google Scholar 

  • Kitagawa, G. and Gersch, W. (1984). A smoothness priors-state space modeling of time series with trend and seasonality, J. Amer. Statist. Assoc., 79, 378–389.

    Google Scholar 

  • Kitagawa, G. and Gersch, W. (1985a). A smoothness priors time-varying AR coefficient modeling of nonstationary covariance time series, IEEE Trans. Automat. Control, AC 30, 57–65.

    Google Scholar 

  • Kitagawa, G. and Gersch, W. (1985b). A smoothness priors long AR model method for spectral estimation, IEEE Trans. Automat. Control, AC 30, 57–65.

    Google Scholar 

  • Koike, M. (1990). A study on stratospheric ozone distribution with the backscattered ultraviolet spectrometer aboard the satellite OZORA, Doctor Thesis, University of Tokyo.

  • Leonard, T. (1978). Density estimation, stochastic process and prior information (with discussion), J. Roy. Statist. Soc. Ser. B, 40, 113–146.

    Google Scholar 

  • Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates of the linear model (with discussion), J. Roy. Statist. Soc. Ser. B, 34, 1–41.

    Google Scholar 

  • Nakamura, T. (1986). Bayesian cohort models for general cohort table analysis, Ann. Inst. Statist. Math., 38, 353–370.

    Google Scholar 

  • Sakamoto, Y. and Ishiguro, M. (1988). A Bayesian approach to nonparametric test problems, Ann. Inst. Statist. Math., 40, 587–602.

    Google Scholar 

  • Sakamoto, Y., Ishiguro, M. and Kitagawa, G. (1986). Akaike Information Criterion Statistics, Reidel, Dordrecht.

    Google Scholar 

  • Silverman, B. W. (1984a). Spline smoothing: the equivalent variable kernel method, Ann. Statist., 12, 898–916.

    Google Scholar 

  • Silverman, B. W. (1984b). A fast and efficient cross-validation method for smoothing parameter choice in spline regression, J. Amer. Statist. Assoc., 79, 584–589.

    Google Scholar 

  • Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion), J. Roy. Statist. Soc. Ser. B, 47, 1–52.

    Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis, Monographs on Statist. Appl. Probab., Chapman and Hall, London.

    Google Scholar 

  • Tamura, Y. H. (1987). An approach to the nonstationary process analysis, Ann. Inst. Statist. Math., 39, 227–241.

    Google Scholar 

  • Tanabe, K. and Tanaka, T. (1983). Fitting curves and surface by Bayesian modeling, Gekkan Chikyu, 5, 179–186 (in Japanese).

    Google Scholar 

  • Titterington, D. M. (1985). Common structure of smoothing techniques in statisties, Internat. Statist. Rev., 53, 141–170.

    Google Scholar 

  • Wahba, G. (1975). Smoothing noisy data with spline functions, Numer. Math., 24, 383–393.

    Google Scholar 

  • Wahba, G. (1990). Spline Models for Observational Data, Society for industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Wahba, G. and Wold, S. (1975). A completely automatic French curve—Fitting spline functions by cross validation, Comm. Statist., 4, 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Higuchi, T. Frequency domain characteristics of linear operator to decompose a time series into the multi-components. Ann Inst Stat Math 43, 469–492 (1991). https://doi.org/10.1007/BF00053367

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053367

Key words and phrases

Navigation