Skip to main content
Log in

Identifiability of finite mixtures using a new transform

  • Distributions and Characterizations
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Identifiability of finite mixtures of the following families of distributions are proved: Weibull, normal log, chi, pareto and power function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, K. E. and Al-Hussaini, E. K. (1982). Remarks on the non-identifiability of mixtures of distributions, Ann. Inst. Statist. Math., 34, 543–544.

    Article  MathSciNet  Google Scholar 

  • Al-Hussaini, E. K. and Ahmad, K. E. (1981). On the identifiability of finite mixtures of distributions, IEEE Trans. Inform. Theory, 27, 664–668.

    Article  MathSciNet  Google Scholar 

  • Blum, J. R. and Susarla, V. (1977). Estimation of a mixing distribution, Ann. Probab., 5, 201–209.

    MathSciNet  MATH  Google Scholar 

  • Chandra, S. (1977). On the mixtures of probability distributions, Scand. J. Statist., 4, 105–112.

    MathSciNet  MATH  Google Scholar 

  • Falls, L. W. (1970). Estimation of parameters in compound Weibull distributions, Technometrics, 12, 399–407.

    Article  Google Scholar 

  • Fraser, M. D., Hsu, Y. S. and Walker, J. J. (1981). Identifiability of finite mixtures of von Mises distributions, Ann. Statist., 9, 1130–1131.

    Article  MathSciNet  Google Scholar 

  • Kao, J. H. K. (1950). A graphical estimation of mixed Weibull parameters in life-testing electron tubes, Technometries, 1, 380–407.

    Google Scholar 

  • Kent, J. T. (1983). Identifiability of finite mixtures for directional data, Ann. Statist., 11, 984–988.

    Article  MathSciNet  Google Scholar 

  • Mohanty, N. C. (1973). On the identifiability of finite mixtures of Laguerre distributions, IEEE Trans. Inform. Theory, 18, 514–515.

    Article  MathSciNet  Google Scholar 

  • Rennie, R. R. (1972). On the interdependence of the identifiability of multivariate mixtures and the identifiability of the marginal mixtures, Sankhyā Ser. A. 34, 449–452.

    MathSciNet  MATH  Google Scholar 

  • Teicher, H. (1961). Identifiability of mixtures, Ann. Math. Statist., 33, 244–248.

    Article  MathSciNet  Google Scholar 

  • Teicher, H. (1963). Identifiability of finite mixtures, Ann. Math. Statist., 34, 1265–1269.

    Article  MathSciNet  Google Scholar 

  • Teicher, H. (1967). Identifiability of product measures, Ann. Math. Statist., 38, 1300–1302.

    Article  MathSciNet  Google Scholar 

  • Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures, Ann. Math. Statist., 39, 209–214.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ahmad, K.E. Identifiability of finite mixtures using a new transform. Ann Inst Stat Math 40, 261–265 (1988). https://doi.org/10.1007/BF00052342

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052342

Key words and phrases

Navigation