Skip to main content
Log in

Antarctic microbial diversity: the basis of polar ecosystem processes

  • Papers
  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Microorganisms are fundamental to the functioning of Antarctic ecosystems. Although microbial biomass can be immense in Southern Ocean blooms and freshwater cyanobacterial mats, species richness is generally more restricted than it is in temperate regions. However, there are representatives of a broad variety of taxa providing a diverse gene pool. Species diversity may be low while metabolic flexibility is high so that a few strains can provide most necessary functions. In this context, biodiversity is the sum of biological potential. This Special Issue highlights aspects of microbial ecology that can be studied only in Antarctica or which are defined most clearly in Antarctic habitats. Relatively simple microbial communities, or conspicuous species within them, can be used as indicators of microbial processes and responses to environmental change. These include the palaeological record of benthic diatoms and response of soil cyanobacterial communities to regional warming and UV-B stress. The climatic conditions and relict babitats of the Antarctic dry valleys are a valuable analogue for detecting microbial life and diversity on Mars. The global microbial biodiversity initiative Diversitas and international Antarctic networks such as BIOTAS (Biological Investigations of Terrestrial Antarctic Systems) harness taxonomic and ecophysiological expertize to understand better these unique polar ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abyzov, S.S. (1993) Microorganisms in the Antarctic ice. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 265–95. New York: Wiley-Liss.

    Google Scholar 

  • Aletsee, L. and Jahnke, J. (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol. 11, 643–7.

    Google Scholar 

  • Allsopp, D., Colwell, R.R. and Hawksworth, D.L. (eds) (1995) Microbial Diversity and Ecosystem Function. Wallingford, Oxford: CAB International.

    Google Scholar 

  • Andreoli, C., Scarabel, L., Spini, S. and Grassi, C. (1992) Picoplankton in Antarctic lakes of northern Victoria land during summer 1989–1990. Polar Biol. 11, 575–82.

    Google Scholar 

  • Atlas, R.M., Horowitz, A., Krichevsky, M. and Bej, A.K. (1991) Response of microbial populations to environmental disturbance. Microb. Ecol. 22. 249–56.

    Google Scholar 

  • Bargagli, R., Broady, P.A. and Walton, D.W.H. (1996) Preliminary investigation of the thermal biosystem of Mount Rittman fumaroles (northern Victoria Land, Antarctica). Antarct. Sci. 8, 121–6.

    Google Scholar 

  • Baublis, J. A., Wharton, R. A.Jr. and Volz, P.A. (1991) Diversity of micro-fungi in an Antarctic dry valley. J. Basic Microbiol. 31, 3–12.

    Google Scholar 

  • Bayliss, P. (1995) An Investigation of Geomicrobiological Nutrient Cycling in the Freshwater Lakes of Signy Island, South Orkney Islands. Antarctica. Unpublished M.Phil, Open University. U.K.

  • Björck, S., Håkansson, H, Olsson, S., Barnekow, L. and Janssens, J. (1993) Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. J. Paleolimnol. 8, 233–72.

    Google Scholar 

  • Bonnet, L. (1966) Le peuplement thecamoebien de quelques sols due Chili. Protistologica 2, 113–41.

    Google Scholar 

  • Broady, P.A. (1992) Identification of propagules — algae. In BIOTAS Manual of Methods for Amarctic Terrestrial and Freshwater Research (D.D. Wynn-Williams, ed.) 23 pp. Cambridge: Scientific Committee on Antarctic Research.

    Google Scholar 

  • Broady, P.A. (1993) Culture collections of Antarctic non-marine algae: an appeal. BIOTAS Newslett. 8, 13–14.

    Google Scholar 

  • Broady, P.A. and Smith, R.A. (1994) A preliminary investigation of the diversity, survivability and dispersal of algae introduced into Antarctica by human activity. Proc. NIPR Symp. Polar Biol. 7, 185–97.

    Google Scholar 

  • Broady, P.A., Given, D., Greenfield, L.G. and Thompson, K. (1987) The biota and environment of tumaroles on Mount Melbourne, northern Victoria Land. Polar Biol. 7, 97–113.

    Google Scholar 

  • Brown, A.D. (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv. Microb. Physiol. 17, 181–242.

    Google Scholar 

  • Brown, A.D. (ed.) (1990) Microbial Water Stress Physiology. Chichester: John Wiley.

    Google Scholar 

  • Burch, M.D. and Marchant, H.J. (1983) Motility and microtubule stability of Antarctic algae at subzero temperatures. Protoplasma 115, 240–50.

    Google Scholar 

  • Cameron, R.E. (1971) Antarctic soil microbiological and ecological investigations. In Research in the Antarctic (L.O. Quam, ed.) pp 137–89. Washington, DC: American Association for the Advancement of Science.

    Google Scholar 

  • Cameron, R.E. (1972a) Farthest south algae and associated bacteria. Phycologia 11, 133–9.

    Google Scholar 

  • Cameron, R.E. (1972b) Pollution and conservation of the Antarctic terrestrial ecosystem. In Proceedings of the Colloquium on Conservation Problems in Antarctica (B.C. Parker, ed.) pp. 267–308. Lawrence: Allen Press.

    Google Scholar 

  • Cameron, R.E., David, C.N. and King, J. (1968) Soil toxicity in Antarctic dry valleys. Antarct. J. US 3, 164–6.

    Google Scholar 

  • Cameron, R.E., Honour, R.C. and Morelli, F.A. (1976) Antarctic microbiology — preparation for Mars life detection, quarantine and back contamination. In Extreme Environments — Machanics of Microbial Adaptation (M.R. Heinrich. ed.) pp. 57–82. London: Academic Press.

    Google Scholar 

  • Castenholz, R.W. (1992) Species usage, concept, and evolution in the Cyanobacteria (blue-green algae). J. Phycol. 28, 737–45.

    Google Scholar 

  • Chalmers, M.O., Harper, M.A. and Marshall, W.A. (1996) An Illustrated Catalogue of Airborne Microbiota from the Maritime Antarctic. Cambridge: British Antarctic Survey.

    Google Scholar 

  • Cole, J.J., Findlay, S. and Pace, M.L. (1988) Bacterial production in fresh and saltwater ecosystem: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10.

    Google Scholar 

  • Colwell, R.R., MacDonell, M.T. and Swartz, D. (1989) Identification of an Antarctic endolithic microorganism by 5S rRNA sequence analysis. System. Appl. Microbiol. 11, 182–6.

    Google Scholar 

  • Colwell, R.R., Clayton, R.A., Ortiz-Conde, B.A., Jacobs, D. and Russek-Cohen, E. (1995) The microbial species concept and biodiversity. In Microbial Diversity and Ecosystem Function (D. Allsopp, R.R. Colwell and D.L. Hawksworth, eds) pp. 3–15. Wallingford, Oxford: CAB International.

    Google Scholar 

  • Cox, G.F.N. and Weeks, W.K. (1983) Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol. 29, 306–16.

    Google Scholar 

  • Davey, M.C. (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol. 10, 29–36.

    Google Scholar 

  • Davey, M.C. and Clarke, K.J. (1991) The spatial distribution of microalgae on Antarctic fellfield soils. Antarct. Sci. 3, 257–63.

    Google Scholar 

  • Davidson, A.T. and Marchant, H.J. (1992) Protist abundance and carbon concentration during a Phaeocystis-dominated bloom at an Antarctic coastal site. Polar Biol. 12, 387–95.

    Google Scholar 

  • Davidson, A.T. and Marchant, H.J. (1994) The impact of ultraviolet radiation on Phaeocystis and selected species of Antarctic marine diatoms. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (C.S. Weiler and P.A. Penhale, eds) Antarct. Res. Ser. 62, 187–205. Washington, DC: American Geophysical Union.

    Google Scholar 

  • de Baar, H.J.W., de Jong, J.T.M., Bakker, D.C.E., Löscher, B.M., Veth, C., Bathmann, U. and Smetacek, V. (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–5.

    Google Scholar 

  • Delille, D. (1992) Marine bacterioplankton at the Weddell Sea ice edge, distribution of psychrophilic and psychrotrophic populations. Polar Biol. 12, 205–10.

    Google Scholar 

  • Delille, D., Fiala, M. and Rosiers, C. (1995) Seasonal changes in phytoplankton and bacterioplankton distribution at the ice-water interface in the Antarctic neritic area. Mar. Ecol. Prog. Ser. 123, 225–33.

    Google Scholar 

  • DeLong, E.F., Wu, K.Y., Prezelin, B.B. and Jovine, R.V.M. (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371, 695–7.

    Google Scholar 

  • Doran, P.T., Wharton, R.A. and Lyons, W.B. (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolimnol. 10, 85–114.

    Google Scholar 

  • Edwards, H.G.M., Russell, N.C., Seaward, M.R.D. and Wynn-Williams, D.D. (1995) FT-Raman spectroscopic studies of environmental biodeterioration. In Proceedings of the 1st Australian Conference on Vibrational Spectroscopy, Sydney, Australia, SII-1. (R.S. Armstrong, ed.) pp. 41–2. Sydney: University of Sydney Press.

    Google Scholar 

  • Ellis-Evans, J.C. (1984) Methane in maritime Antarctic freshwater lakes. Polar Biol. 3, 63–71.

    Google Scholar 

  • Ellis-Evans, J.C. and Wynn-Williams, D.D. (1985) The interaction of soil and lake microflora at Signy Island. In Antarctic Nutrient Cycles and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, eds) pp. 662–8. Berlin: Springer Verlag.

    Google Scholar 

  • Ellis-Evans, J.C. and Wynn-Williams, D.D. (1996) A great lake under the ice. Nature 381, 644–6.

    Google Scholar 

  • Ellis-Evans, J.C., Laybourn-Parry, J., Bayliss, P. and Perriss, S. (in press b) Human impact on an oligotrophic lake in the Larsemann Hills. In Antarctic Communities: Species, Structure and Survival, SCAR Sixth Biology Symposium (D.W.H. Walton, B. Battaglia and J. Valencia, eds) Cambridge: Cambridge University Press.

  • Fenchel, T. and Ramsing, N.B. (1992) Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch. Microbiol. 158, 394–7.

    Google Scholar 

  • Friedmann, E.I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–53.

    Google Scholar 

  • Friedmann, E.I., McKay, C.P. and Nienow, J. (1987) The cryptoendolithic microbial environment in Ross Desert of Antarctical continuous nanoclimate data, 1984–1986. Polar Biol. 7, 273–87.

    Google Scholar 

  • Friedmann, E.I., Hua, M. and Ocampo-Friedmann, R. (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforsch. 58, 251–9.

    Google Scholar 

  • Gapp, K. (1966) The adaptation of an Antarctic fellfield cyanobacterium to nutrient limitation. PhD Thesis, Coventry: University of Warwick.

  • Gleitz, M., Grossmann, S., Scharek, R. and Smetacek, V. (1996) Ecology of diatom and bacterial assemblages in water associated with melting summer ice in the Weddell Sea, Antarctica. Antarct. Sci. 8, 135–46.

    Google Scholar 

  • Gosink, J.J. and Staley, J.T. (1995) Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microb. 61, 3486–9.

    Google Scholar 

  • Håkansson, H. and Jones, V.J. (1994). The compiled freshwater diatom taxa list for the maritime Antarctic region of the South Shetland and South Orkney Islands. In Proceedings of the Fourth Arctic Antarctic Diatom Symposium (workshop), Canadian Museum of Nature, Ottawa, Ontario, September 18–21, 1993 (P.B. Hamilton, ed.). Can. Tech. Rep. Fish Aquatic Sci. 1957, 77–83.

  • Hawes, I. (1985) Factors controlling phytoplankton population in Maritime Antarctic lakes. In Antarctic Nutrient Cycling and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, eds) pp. 245–52. Berlin: Springer-Verlag.

    Google Scholar 

  • Hawes, I., Howard-Williams, C. and Vincent, W.F. (1992) Desiccation and recovery of cyanobacterial mats. Polar Biol. 12, 587–94.

    Google Scholar 

  • Hawksworth, D.L. and Colwell, R.R. (1992) Microbial Diversity 21: biodiversity amongst microorganisms and its relevance. Biodiv. Conserv. 1, 221–6.

    Google Scholar 

  • Helbling, E.W., Vilafañe, V. and Holm-Hansen, O. (1994) Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (C.S. Weiler and P.A. Penhale, eds) Antarct. Res. Ser. 62, 207–27. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Horner, R., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I.A., Reeburgh, W.S., Spindler, M. and Sullivan, C.S. (1992) Ecology of sea ice biota 1. Habitat, terminology, and methodology. Polar Biol. 12, 417–27.

    Google Scholar 

  • Howard-Williams, C., Pridmore, R.D., Broady, P.A. and Vincent, W.F. (1990) Environmental and biological variability in the McMurdo Ice Shelf Ecosystem. In Ecological Change and Conservation of Antarctic Ecosystems (K. Kerry and G. Hempel, eds) pp. 23–31. Berlin: Springer Verlag.

    Google Scholar 

  • Hughes, J. and Smith, H.G. (1989) Temperature relations of Heteromita globosa Stein in Signy Island Fellfields. In University Research in Antarctica (R.B. Heywood, ed.) pp. 117–12. (Antarctic Special Topic Symposium.) Cambridge: British Antarctic Survey.

    Google Scholar 

  • James, M.R., Pridmore, R.D. and Cummings, V.J. (1995) Planktonic communities of melt ponds on the McMurdo Ice Shelf, Antarctica. Polar Biol. 15, 555–68.

    Google Scholar 

  • Jones, V.J. Juggins, S. and Ellis-Evans, J.C. (1993) The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes. Antarct. Sci. 5, 339–48.

    Google Scholar 

  • Kapitsa, A.P., Ridley, J.K., Robin, G. de Q and Siegert, M.J. (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381, 684–6.

    Google Scholar 

  • Karentz, D. (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (C.S. Weiler and P.A. Penhale, eds) Antarct. Res. Ser. 62, 93–110. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Karl, D.M. (1993) Microbial processes in the Southern Oceans. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 1–63. New York Wiley-Liss.

    Google Scholar 

  • Kennedy, A.D. (1995) Simulated climate change: are passive greenhouses a valid microcosm for testing biological effects of environmental perturbations? Global Change Biol. 1, 29–42.

    Google Scholar 

  • King, J.C. (1994) Recent climatic variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol. 14, 357–69.

    Google Scholar 

  • Kirst, G.O., Thiel, C., Wolff, H., Nothnagel, J., Wanzek, M., Ulmke, R. (1991) Dimethylsulphoniopropionate (DMSP) in ice-algae and its possible biological role. Mar. Chem. 35, 381–8.

    Google Scholar 

  • Klein, H.P. (1979) The Viking mission and the search for life on Mars. Rev. Geophys. Space Phys. 17, 1655–62.

    Google Scholar 

  • Klingler, J. M. and Vishniac, H. S. (1988) A contribution of Antarctic ecology to yeast systematics. Polarforsch. 58, 83–92.

    Google Scholar 

  • Kopczynska, E.E. (1992) Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. Plankt. Res. 14, 1031–54.

    Google Scholar 

  • Kottmeier, S.T. and Sullivan, C.W. (1988) Sea ice microbial communities (SIMCO) 9. Effects of temperature and salinity on rates of metabolism and growth of autotrophs and heterotrophs. Polar Biol. 8, 293–304.

    Google Scholar 

  • Kuosa, H., Norrman, B., Kivi, K. and Brandini, F. (1992) Effects of Antarctic sea ice biota on seeding as studied in aquarium experiments. Polar Biol. 12, 333–9.

    Google Scholar 

  • Laybourn-Parry, J. and Marchant, H.J. (1992) The microbial plankton of freshwater lakes in the Vestfold Hills, Antarctica. Polar Biol. 12, 405–10.

    Google Scholar 

  • Liesack, W. and Stackebrandt, E. (1992) Unculturable microbes detected by molecular sequences and probes. Biodiv. Conserv. 1, 250–62.

    Google Scholar 

  • Lindeboom, H.J. (1984) The nitrogen pathway in a penguin rookery. Ecology 65, 269–77.

    Google Scholar 

  • McGinnis, L.D. (1978) Appendix: Critique by Lyle D. McGinnis. In Environmental Impact in Antarctica (B.C. Parker, ed.) pp. 253–54. Blacksburg: Virginia Polytechnic Institute.

    Google Scholar 

  • McKay, C.P. (1993) Relevance of Antarctic microbial ecosystems to exobiology. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 593–601. New York: Wiley-Liss.

    Google Scholar 

  • McKay, C.P., Friedmann, E.I., Wharton, R.A. and Davies, W.L. (1992) History of water on Mars: a biological perspective. Adv. Space Res. 12, 231–8.

    Google Scholar 

  • Marchant, H.R., Davidson, A.T. and Wright, S.W. (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc. NIPR Symp. Polar Biol. 1, 1–9.

    Google Scholar 

  • Martin, J.H., Gordon, R.M. and Fitzwater, S.E. (1991) The case for iron. Limnol. Oceanogr. 36, 1793–802.

    Google Scholar 

  • Melick, D.R., Broady, P.A. and Rowan, K.S. (1991) Morphological and physiological characteristics of a non-heterocystous strain of the cyanobacterium Mastigocladus laminosus Cohn from fumarolic soil on Mt Erebus, Antarctica. Polar Biol 11, 81–9.

    Google Scholar 

  • Muchmore, H.G., Scott, E.N. and Parkinson, A.J. (1993) Human infectious diseases. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 571–92. New York: Wiley-Liss.

    Google Scholar 

  • Murphy, E.J., Field, J., Kagan, B., Lin, C., Ryabchenko, V., Sarmiento, J. and Steele, J. (1993) Global extrapolation. In Towards a Model of Ocean Biogeochemical Processes (G.T. Evans and M.J.R. Fasham, eds) pp. 21–46. Berlin: Springer-Verlag.

    Google Scholar 

  • Myrcha, A., Pietr, S.J. and Tatur, A. (1985) The role of Pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George island. In Antarctic Nutrient Cycles and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, eds) pp. 156–62. Berlin: Springer-Verlag.

    Google Scholar 

  • Nienow, J.A. and Friedmann, E.I. (1993) Terrestrial lithophytic (rock) communities. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 343–412. New York: Wiley-Liss.

    Google Scholar 

  • Oguni, A. and Takahashi, E. (1989) Floristic studies on algae from inland waters of Antarctica: II. Lake O-ike, West Ongul Island. In Proceedings of the NIPR Symposium on Polar Biology. National Institute of Polar Research, Tokyo, 2, 154–66.

    Google Scholar 

  • Oppenheim, D.R. and Greenwood, R. (1990) Epiphytic diatoms in two freshwater maritime Antarctic lakes. Fresh. Biol. 24, 303–14.

    Google Scholar 

  • Palmisano, A.C. and Garrison, D.I., (1993) Microorganisms in Antarctic sea ice. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 167–218. New York: John Wiley.

    Google Scholar 

  • Parker, B.C., Howard, R.V. and Allnutt, F.C.T. (1978) Summary of environmental monitoring and impact assessment of the DVDP. In Environmental Impact in Antarctica (B.C. Parker, ed.) pp. 211–51. Blacksburg: Virginia Polytechnic Institute.

    Google Scholar 

  • Reichardt, W. (1988) Impact of the Antarctic benthic fauna on the enrichment of biopolymer degrading psychrophilic bacteria. Microb. Ecol. 15, 311–21.

    Google Scholar 

  • Sherr, B.F. and Sherr, E.B. (1988) Rote of microbes in pelagic foodwebs: a revised concept. Limnol. Oceanogr. 33, 1225–7.

    Google Scholar 

  • Siegel, B.Z., Siegel, S.M., Chen, J. and La Rock, P. (1983) Extraterrestrial habitat on earth: the algal mat of Don Juan Pond. Adv. Space Res. 3, 39–42.

    Google Scholar 

  • Simmons, G.M., Vestal, J.R. and Wharton, R.A. (1993) In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 491–541. New York: Wiley-Liss.

    Google Scholar 

  • Smith, H.G. (1982) The terrestrial protozoan fauna of South Georgia. Polar Biol. 1, 173–9.

    Google Scholar 

  • Smith, H.G. (1987) Ecology of protozoa in Antarctic fellfields. In Soil Fauna and Soil Fertility. Proceedings of 9th International Colloquium in Soil Zoology, Moscow, 1985 (B.R. Striganova, ed.) pp. 480–3. Moscow: Moscow Nauka.

    Google Scholar 

  • Smith, H.G. (1992) Distribution and ecology of the testate rhizopod fauna of the continental Antarctic zone. Polar Biol. 12, 629–34.

    Google Scholar 

  • Sneath, P.H.A. (1977) Identification methods applied to Chromobacterium. Soc. Appl. Bact. Tech. Ser. 13, 67–82.

    Google Scholar 

  • Stamnes, K., Jin, Z., Slusser, J., Booth, C. and Lucas, T. (1992) Several-fold enhancement of biologically-effective ultraviolet radiation levels at McMurdo Station, Antarctica, during the 1990 ozone ‘hole’. Geophys. Res. Lett. 19, 1013–6.

    Google Scholar 

  • Stoecker, D.K., Buck, K.R. and Putt, M. (1992) Changes in the sea-ice brine community during spring-summer transition, McMurdo Sound, Antarctica. II. Phagotrophic protists. Mar. Ecol. Progr. Ser. 95, 103–13.

    Google Scholar 

  • Sun, S.H., Huppert, M. and Cameron, R.E. (1978) Identification of some fungi from soil and air of Antarctica. Antarct. Res. Ser. 30, 1–26.

    Google Scholar 

  • Svensson, B.H. (1980) Carbon dioxide and methane fluxes from the ombrotrophic parts of a subarctic mire, Ecol. Bull. (Stockholm) 30, 235–50.

    Google Scholar 

  • Vickerman, K. (1992) The diversity and ecological significance of protozoa. Biodiv. Conserv. 1, 334–41.

    Google Scholar 

  • Viles, C.L. and Sieracki, M.E. (1992) Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy. Appl. Environ. Microbiol. 58, 584–92.

    Google Scholar 

  • Vincent, W.F. (1981) Production strategies in Antarctic inland waters: phytoplankton ecophysiology in a permanently ice-covered lake. Ecology 62, 1215–24.

    Google Scholar 

  • Vincent, W.F. (1996) Environmental Management of a Cold Desert Ecosystem: the McMurdo Dry Valleys. Report of a National Science Foundation Workshop held at Santa Fe, New Mexico, 14–17 March 1995. Washington, DC: National Science Foundation.

    Google Scholar 

  • Vincent, W.F. and Howard-Williams, C. (1994) Nitrate-rich inland waters of the Ross Ice Shelf Region, Antarctica. Antarct. Sci. 6 339–46.

    Google Scholar 

  • Vincent, W.F. and Vincent, C.L. (1982) Factors controlling phytoplankton production in Lake Vanda (77oS). Can. J. Fish. Aquin. Sci. 39, 1602–9.

    Google Scholar 

  • Vinocur, A. and Pizarro, H. (1995) Periphyton flora of some lotic and lentic environments of Hope Bay, Antarctic Peninsula. Polar Biol. 15, 401–14.

    Google Scholar 

  • Vishniac, H.S. and Klingler, J.M. (1986) Yeasts in the Antarctic deserts. In Perspectives in Microbial Ecology (F. Megusar and M. Gantar, eds) pp. 46–51. Ljubljana: Slovene Society for Microbiology.

    Google Scholar 

  • Voytek, M.A. and Ward, B.B. (1995) Detection of ammonium-oxidizing bacteria of the beta subclass of the class Proteobacteria in aquatic samples with PCR. Appl. Environ. Microb. 61, 1444–50.

    Google Scholar 

  • Ward, B.B., Cockroft, A.R. and Priscu, J.R. (1993) Nitrifying and denitrifying bacteria in Lake Bonney. Antarct. J. US. Rev. 28, 239–4.

    Google Scholar 

  • Wharton, R.A. (1993) McMurdo Dry Valleys: A cold desert ecosystem. Antarct. J. US 28, 9–11.

    Google Scholar 

  • Wharton, R.A., Vinyard, W.C., Parker, B.C., Simmons, G.M. and Seaburg, K.G. (1981) Algae in cryoconite holes on Canada Glacier in southern Victoria Land, Antarctica. Phycologia 20, 208–11.

    Google Scholar 

  • Wilkinson, D.M. (1994) A review of the biogeography of the protozoan genus Nebela in the southern temperate and Antarctic zones. Area 26.2, 150–7.

    Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221–71.

    Google Scholar 

  • Wood, A.M., Horan, P.K., Muirhead, K., Phinney, D.A., Yentsch, C.M. and Waterbury, J.B. (1985) Discrimination between different types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy and flow cytometry. Limnol. Oceanog. 30, 1303–15.

    Google Scholar 

  • Wynn-Williams, D.D. (1980) Seasonal fluctuations in microbial activity in Antarctic moss peat. Biol. J. Linn. Soc. 14, 11–28.

    Google Scholar 

  • Wynn-Williams, D.D. (1983) Distribution and characteristics of Chromobacterium in the Maritime and Sub-Antarctic. Polar. Biol. 2, 101–8.

    Google Scholar 

  • Wynn-Williams, D.D. (1991) Aerobiology and colonisation in Antarctica — the BIOTAS programme. Grana 30, 380–93.

    Google Scholar 

  • Wynn-Williams, D.D. (ed.) (1992) BIOTAS Manual of Methods for Antarctic Terrestrial and Freshwater Research Cambridge: Scientific Committee on Antarctic Research.

    Google Scholar 

  • Wynn-Williams, D.D. (1993) Microbial processes and initial stabilisation of fellfield. In Primary Succession on Land. Special Publication No. 12 of The British Ecological Society (J. Miles and D.W.H. Walton, eds) pp. 17–32. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Wynn-Williams, D.D. (1994) Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonisers: cyanobacteria, algae and cryptogams. Antarct. Res. Ser. 62, 243–57.

    Google Scholar 

  • Wynn-Williams, D.D. (1996) Response of pioneer soil microbial colonists to environmental change in Antarctica. Microb. Ecol. 31, 177–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynn-Williams, D.D. Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5, 1271–1293 (1996). https://doi.org/10.1007/BF00051979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051979

Keywords

Navigation