Skip to main content
Log in

Minimax kernels for density estimation with biased data

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper considers the asymptotic properties of two kernel estimates % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\], which have been proposed by Bhattacharyya et al. (1988, Comm. Statist. Theory Methods, A17, 3629–3644) and Jones (1991, Biometrika, 78, 511–519), respectively, for estimating the underlying density f at a point under a general selection biased model. The asymptotic optimality of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]is measured by the corresponding asymptotic minimax mean squared errors under a compactly supported Lipschitz continuous family of the underlying densities. It is shown that, in general, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is a superior local estimate than % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]in the sense that the asymptotic minimax risk of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is lower than that of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]. The minimax kernels and bandwidths of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]are computed explicity and shown to have simple forms and depend on the weight functions of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I. A. (1995). On multivariate kernel estimation for samples from weighted distributions, Statist. Probab. Lett., 22, 121–129.

    Google Scholar 

  • Bhattacharyya B. B., Franklin L. A. and Richardson G. D. (1988). A comparison of nonparametric unweighted and length-biased density estimation of Fibres, Comm. Statist. Theory Methods, A 17, 3629–3644.

    Google Scholar 

  • Cox D. R. (1969). Some sampling problems in technology, New Developments in Survey Sampling (eds. N. L. Johnson and H. SmithJr.), 506–527, Wiley-Interscience, New York.

    Google Scholar 

  • Donoho D. L. and Liu R. C. (1991a). Geometrizing rates of convergence II, Ann. Statist. 19, 633–667.

    Google Scholar 

  • Donoho D. L. and Liu R. C. (1991b). Geometrizing rates of convergence III, Ann. Statist., 19, 668–701.

    Google Scholar 

  • Jones M. C. (1991). Kernel density estimation for length biased data, Biometrika, 78, 511–519.

    Google Scholar 

  • Patil G. P. and Taillie C. (1989). Probing encountered data, meta analysis and weighted distribution methods, Statistical Data Analysis and Inference (ed. Y. Dodge) 317–346. North-Holland, Amsterdam.

    Google Scholar 

  • Patil G. P., Rao C. R. and Zelen M. (1988). Weighted distributions, Encyclopedia of Statistical Sciences, 9 (eds. S. Kotz and N. L. Johnson), 565–571, Wiley, New York.

    Google Scholar 

  • Sacks J. and Ylvisaker D. (1981). Asymptotically optimum kernels for density estimation at a point, Ann. Statist., 9, 334–346.

    Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis, Monographs Statist. Appl. Probab., 26, Chapman and Hall.

  • Stone C. J. (1980). Optimal convergence rates for nonparametric estimators, Ann. Statist., 8, 1348–1360.

    Google Scholar 

  • Vardi Y. (1985). Empirical distributions in selection bias models (with discussion), Ann. Statist., 13, 178–205.

    Google Scholar 

  • Wu C. O. (1994). On comparison of kernel estimates of density at a point with selection biased data, Tech., Report, No. 536, Department of Mathematical Sciences, The Johns Hopkins University, Maryland.

    Google Scholar 

  • Wu C. O. (1995). Minimax kernel density estimators with length biased data. Mathematical Methods of Statistics, 4, 56–80.

    Google Scholar 

  • Wu C. O. and Mao A. Q. (1994). Minimax kernels for Jones type density estimators with selection biased data, Tech. Report, No. 535, Department of Mathematical Sciences, The Johns Hopkins University, Maryland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wu, C.O., Mao, A.Q. Minimax kernels for density estimation with biased data. Ann Inst Stat Math 48, 451–467 (1996). https://doi.org/10.1007/BF00050848

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050848

Key words and phrases

Navigation