Skip to main content
Log in

Recursive kernel density estimators under a weak dependence condition

  • Density Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let X t, t= ..., \s-1,0,1,... be a strietly stationary sequence of random variables (r.v.'s) defined on a probability space (Ω,P) and taking values in R d.Let X 1,...,X nbe n consecutive observations of X t.Let f be the density of X 1.As an estimator of f(x), we shall consider % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaaiaacaqabeaadaqaaqGaaO% qaaiqadAgagaqcamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGa% aiykaiabg2da9iaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcda% aeWbqaaiaadkgadaWgaaWcbaGaamOAaaqabaGcdaahaaWcbeqaaiab% gkHiTiaadsgaaaGccaWGlbGaaiikaiaacIcacaWG4bGaeyOeI0Iaam% iwamaaBaaaleaacaWGQbaabeaakiaacMcacaGGVaGaamOyamaaBaaa% leaacaWGQbaabeaakiaacMcaaSqaaiaadQgacqGH9aqpcaaIXaaaba% GaamOBaaqdcqGHris5aaaa!58A9!\[\hat f_n (x) = n^{ - 1} \sum\limits_{j = 1}^n {b_j ^{ - d} K((x - X_j )/b_j )} \]. Here K is a kernel function and b nis a esquence of bandwidths tending to zero as n → ∞. The asymptotic distribution and uniform convergence of f n are obtained under general conditions. Appropriate bandwidths are given explicitly. The process X tis assumed to satisfy a weak dependence condition defined in terms of joint densities. The results are applicable to a large class of time series models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Devroye, L. and Gyorfi, L. (1985) Nonparametric Density Estimation: The L 1 View, Wiley, New York.

    Google Scholar 

  • Fukunaga, K. (1972). Introduction to Statistical Pattern Recognition, Academic Press, New York.

    Google Scholar 

  • Fukunaga, K. and Hostetler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Trans. Inform. Theory, 21, 32–40.

    Google Scholar 

  • Gyorfi, L. (1981). Strong consistent density estimate from ergodic sample, J. Multivariate Anal., 11, 81–84.

    Google Scholar 

  • Gyorfi, L. and Masry, E. (1988). The L 1 and L 2 strong consistency of recursive kernel density estimation from dependent samples, Report, TU Budapest.

  • Gyorfi, L., Hardle, W., Sarda, P. and Vieu, P. (1988). Nonparametric curve estimation from time series, Preprint of book, 1988.

  • Hart, J. D. and Vieu, P. (1988). Data driven bandwidth choice for density estimation based on dependent data, Tech. Report, Department of Statistics, Texas A&M University, College Station, Texas.

  • Ibragimov, I. A. and Rozanov, Yu. V. (1978). Gaussian Random Processes, Springer, New York.

    Google Scholar 

  • Ioannides, D. A. and Roussas, G. G. (1987). Note on the uniform convergence of density estimates for mixing random variables, Statist. Probab. Lett., 5, 279–285.

    Google Scholar 

  • Masry, E. (1986). Recursive probability density estimation for weakly dependent stationary processes. IEEE Trans. Inform. Theory. 32, 254–267.

    Google Scholar 

  • Masry, E. (1987). Almost sure convergence of recursive density estimators for stationary mixing processes, Statist. Probab. Lett., 5, 249–254.

    Google Scholar 

  • Masry, E. and Gyorfi, L. (1987). Strong consistency and rates for recursive probability density estimators of stationary processes, J. Multivariate Anal. 22, 79–93.

    Google Scholar 

  • Pham, D. T. (1986). The mixing property of bilinear and generalized random coefficient autoregressive models, Stochastic Process. Appl., 23, 291–300.

    Google Scholar 

  • Pham, D. T. and Tran, L. T. (1985). Some mixing properties of time series models, Stochastic Process. Appl., 19, 297–303.

    Google Scholar 

  • Robinson, P. M. (1983). Nonparametric estimators for time series, J. Time Ser. Anal., 4, 185–207.

    Google Scholar 

  • Rosenblatt, M. (1970). Density estimates and Markov sequences, Nonparametric Techniques in Statistical Inference, (ed. M. Puri), 199–210, Cambridge Univ. Press, London.

    Google Scholar 

  • Roussas, G. G. (1969). Nonparametric estimation of the transition distribution function of a Markov Process, Ann. Math. Statist. 40, 1386–1400.

    Google Scholar 

  • Roussas, G. G. (1988). Nonparametric estimation in mixing sequences of random variables, J. Statist. Plann. Inference, 18, 135–149.

    Google Scholar 

  • Silverman, B. W. (1978). Choosing a window width when estimating a density, Biometrika, 65, 1–11.

    Google Scholar 

  • Stone, C. J. (1983). Optimal uniform rate of convergence for nonparametric estimators of a density function and its derivatives, Recent Advances in Statistics: Papers in Honor of H. Chernoff, (eds. M. H. Rezvi, J. S. Rustagi and D. Siegmund), 393–306, Academic Press, New York.

    Google Scholar 

  • Takahata, H. (1977a). Limiting behavior of density estimates for stationary asymptotically uncorrelated processes, Bull. Tokyo Gakugei Univ. (4), 29, 1–9.

    Google Scholar 

  • Takahata, H. (1977b). On recursive density estimators for a class of stationary processes, Bull. Tokyo Gakugei Univ. (4), 29, 10–18.

    Google Scholar 

  • Takahata, H. (1979). An application of the Strassen law of iterated logarithm to density estimations, Bull. Tokyo Gakugei Univ. (4), 31, 45–50.

    Google Scholar 

  • Takahata, H. (1980). Almost sure convergence of density estimators for weakly dependent stationary processes, Bull. Tokyo Gakugei Univ. (4), 32, 11–32.

    Google Scholar 

  • Tran, L. T. (1989a). Recursive density estimation under dependence, IEEE Trans. Inform. Theory, 35, 1103–1108.

    Google Scholar 

  • Tran, L. T. (1989b). the L 1 complete convergence of recursive density estimators under weak dependence (manuscript).

  • Wegman, E. J. and Davies, H. I. (1979). Remarks on some recursive estimators of a probability density function, Ann. Statist., 7, 316–327.

    Google Scholar 

  • Wolverton, C. T. and Wagner, T. J. (1969a). Asymptotically optimal discriminant functions for pattern classification, IEEE Trans. Inform. Theory, 15, 258–265.

    Google Scholar 

  • Wolverton, C. T. and Wagner, T. J. (1969b). Reeursive estimates of probability densities, IEEE Trans. Syst. Sci. Cybern., 5, 307.

    Google Scholar 

  • Yakowitz, S. (1987). Nearest-neighbor methods for time series analysis, J. Time Ser. Anal., 8, 235–247.

    Google Scholar 

  • Yamato, H. (1971). Sequential estimation of a continuous probability density function and mode, Bull. Math. Statist., 14, 1–12.

    Google Scholar 

  • Yoshihara, K. (1976). Limiting behavior of U-statistics for stationary absolutely regular proeesses, Z. Wahrsch. Verw. Gebiete, 35, 237–252.

    Google Scholar 

  • Yoshihara, K. (1978). Probability inequalities for sums of absolutely regular processes and their applications, Z. Wahrsch. Verw. Gebiete, 43, 319–330.

    Google Scholar 

  • Yoshihara, K. (1984). Density estimation for samples satisfying a certain absolute regularity condition. J. Statist. Plann. Inference, 9, 19–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tran, L.T. Recursive kernel density estimators under a weak dependence condition. Ann Inst Stat Math 42, 305–329 (1990). https://doi.org/10.1007/BF00050839

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050839

Key words and phrases

Navigation