Skip to main content
Log in

Asymptotic behavior of M-estimator and related random field for diffusion process

  • Processes
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The M-estimate which maximizes a positive stochastic process Q is treated for multidimensional diffusion models. The convergence in distribution of the process of ratio of Q's after normalizing is proved. The asymptotic behavior of M-estimates is stated. We present the asymptotic variance in general cases and in estimation by misspecified models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldous, D. J. and Eagleson, G. K. (1978). On mixing and stability of limit theorems, Ann. Probab., 6, 325–331.

    Google Scholar 

  • Arnold, I. and Kliemann, W. (1987). On unique ergodicity for degenerate diffusions, Stochastics, 21, 41–61.

    Google Scholar 

  • Basawa, I. V. and Scott, D. J. (1983). Asymptotic optimal inference for non-ergodic models, Lecture Notes in Statist., 17, Springer, New York.

    Google Scholar 

  • Bustos, O. (1982). General M-estimates for contaminated pth-order autoregressive processes: consistency and asymptotic normality, Z. Wahrsch. Verw. Gebiete, 59, 491–504.

    Google Scholar 

  • Feigin, P. D. (1985). Stable convergence of semimartingales, Stochastic Process. Appl., 19, 125–134.

    Google Scholar 

  • Gihman, I. I. and Skorohod, A. V. (1972). Stochastic Differential Equations, Springer, New York.

    Google Scholar 

  • Ibragimov, I. A. and Has'minskii, R. Z. (1972). Asymptotic behavior of statistical estimators in the smooth case, Theory Probab. Appl., 17, 443–460.

    Google Scholar 

  • Ibragimov, I. A. and Has'minskii, R. Z. (1973). Asymptotic behavior of some statistical estimators II, Limit theorem for the a posteriori density and Bayes estimators, Theory Probab. Appl., 18, 76–91.

    Google Scholar 

  • Ibragimov, I. A. and Has'minskii, R. Z. (1981). Statistical Estimation, Springer, New York.

    Google Scholar 

  • Inagaki, N. and Ogata, Y. (1975). The weak convergence of likelihood ratio random fields and applications, Ann. Inst. Statist. Math., 27, 391–419.

    Google Scholar 

  • Jeganathan, P. (1982a). On the asymptotic theory of statistical estimation when the limit of the log-likelihood ratios is mixed normal, Sankhyā Ser. A, 44, 173–212.

    Google Scholar 

  • Jeganathan, P. (1982b). On the convergence of moments of statistical estimators, Sankhyā Ser. A, 44, 213–232.

    Google Scholar 

  • Keller, G., Kersting, G. and Rösler, U. (1984). On the asymptotic behaviour of solutions of stochastic differential equations. Z. Wahrsch. Verw. Gebiete, 68, 163–189.

    Google Scholar 

  • Kutoyants, Yu. A. (1977). Estimation of the drift coefficient parameter of a diffusion in the smooth case, Theory Probab. Appl., 22, 399–406.

    Google Scholar 

  • Kutoyants, Yu. A. (1978). Estimation of a parameter of a diffusion processes, Theory Probab. Appl., 23, 641–649.

    Google Scholar 

  • Kutoyants, Yu. A. (1984). Parameter Estimation for Stochastic Processes, (trans. and ed. B. L. S. Prakasa Rao), Heldermann Verlag, Berlin.

    Google Scholar 

  • Lanska, V. (1979). Minimum contrast estimation in diffusion processes, J. Appl. Probab., 16, 65–75.

    Google Scholar 

  • LeCam, L. (1960). Locally asymptotic normal family of distributions, Univ. Calif. Publ. Statist., 3, 27–98.

    Google Scholar 

  • Liptser, R. S. and Shiryayev, A. N. (1977). Statistics of Random Processes, Springer, New York.

    Google Scholar 

  • McShane, E. J. (1972). Stochastic differential equations and models of random processes, Proc. Sixth Berkeley Symp. on Math. Statist. Prob., Vol. 3, 263–294, Univ. of California Press, Berkeley.

    Google Scholar 

  • McShane, E. J. (1974). Stochastic Calculus and Stochastic Models, Academic Press, New York.

    Google Scholar 

  • Novikov, A. A. (1971). On moment inequalities for stochastic integrals, Theory Probab. Appl., 16, 538–541.

    Google Scholar 

  • Ogata, Y. and Inagaki, N. (1977). The weak convergence of the likelihood ratio random fields for Markov observations, Ann. Inst. Statist. Math. 29, 165–187.

    Google Scholar 

  • Strasser, H. (1985). Mathematical Theory of Statistics, Walter de Gruyter, Berlin.

    Google Scholar 

  • Wong, E. and Zakai, M. (1965). On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36, 1560–1564.

    Google Scholar 

  • Yoshida, N. (1987). Asymptotic behavior of likelihood ratio in stochastic process (in Japanese), Master Thesis, Osaka University.

  • Yoshida, N. (1988a). Robust M-estimators in diffusion processes, Ann. Inst. Statist. Math., 40, 799–820.

    Google Scholar 

  • Yoshida, N. (1988b). Asymptotic behavior of M-estimates in diffusion processes, Research Reports on Statistics, 22, Osaka Univ.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yoshida, N. Asymptotic behavior of M-estimator and related random field for diffusion process. Ann Inst Stat Math 42, 221–251 (1990). https://doi.org/10.1007/BF00050834

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050834

Key words and phrases

Navigation