Skip to main content
Log in

A threshold for the size of random caps to cover a sphere

  • Probability and Distribution
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Consider a unit sphere on which are placed N random spherical caps of area 4πp(N). We prove that if % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGSbGaaeyAaiaab2gaaaWaaeWaaeaacaWGWbWaaeWaaeaacaWGobaa% caGLOaGaayzkaaGaai4Taiaad6eacaGGVaGaaeiBaiaab+gacaqGNb% Gaaeiiaiaad6eaaiaawIcacaGLPaaacqGH8aapcaaIXaaaaa!454E!\[\overline {{\rm{lim}}} \left( {p\left( N \right)\cdotN/{\rm{log }}N} \right) < 1\], then the probability that the sphere is completely covered by N caps tends to 0 as N → ∞, and if % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWaaaeaaca% qGSbGaaeyAaiaab2gaaaWaaeWaaeaacaWGWbWaaeWaaeaacaWGobaa% caGLOaGaayzkaaGaai4Taiaad6eacaGGVaGaaeiBaiaab+gacaqGNb% Gaaeiiaiaad6eaaiaawIcacaGLPaaacqGH+aGpcaaIXaaaaa!4551!\[\underline {{\rm{lim}}} \left( {p\left( N \right)\cdotN/{\rm{log }}N} \right) > 1\], then for any integer n>0 the probability that each point of the sphere is covered more than n times tends to 1 as N → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Kendall, M. G. and Moran, P. A. P. (1963). Geometric Probability, Griffin, London.

    MATH  Google Scholar 

  • Maehara, H. (1987). On the intersection graph of random arcs on a circle, submitted to Proceedings of Random Graph '87.

  • Santaló, L. A. (1976). Integral geometry and geometric probability, Encyclopedia of Mathematics and Its Applications, Vol. I. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Solomon, H. (1978). Geometric Probability, SIAM, Philadelphia, Pennsylvania.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Maehara, H. A threshold for the size of random caps to cover a sphere. Ann Inst Stat Math 40, 665–670 (1988). https://doi.org/10.1007/BF00049424

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049424

Key words and phrases

Navigation