Skip to main content
Log in

A smoothing spline based test of model adequacy in polynomial regression

  • Test
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For the regression model % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa% aajeaWbaGaamyAaaWcbeaakiabeccaGiabg2da9iabeccaGiaabAga% caGGOaGaamiDamaaBaaajeaWbaGaamyAaaWcbeaakiaacMcacaqGGa% Gaey4kaSIaaeiiamaavababeqcbaCaaiaadMgaaSqab0qaaiabew7a% LbaakiaabccacaGGOaGaeqyTduMaai4jaiaadohacaqGGaGaamyAai% aadMgacaWGKbGaaeiiaiaad6eacaGGOaGaam4taiaacYcacaqGGaGa% eq4Wdm3aaWbaaSqabKqaGgaacaaIYaaaaOGaaiykaiaacMcaaaa!57B9!\[y_i = {\rm{f}}(t_i ){\rm{ }} + {\rm{ }}\mathop \varepsilon \nolimits_i {\rm{ }}(\varepsilon 's{\rm{ }}iid{\rm{ }}N(O,{\rm{ }}\sigma ^2 ))\], it is proposed to test the null hypothesis that f is a polynomial of degree less than some given value m. The alternative is that f is such a polynomial plus a scale factor b 1/2 times an (m−1)-fold integrated Wiener process. For this problem, it is shown that no uniformly (in b) most powerful test exists, but a locally (at b=0) most powerful test does exist. Derivation and calculation of the test statistic is based on smoothing spline theory. Some approximations of the null distribution of the test statistic for the locally most powerful test are described. An example using real data is shown along with a computing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, L. (1974). Stochastic Differential Equations—Theory and Applications, Wiley, New York.

    Google Scholar 

  • Aronszajn, N. (1950). Theory of reproducing kernels, Trans. Amer. Math. Soc., 58, 337–404.

    Google Scholar 

  • Ash, R. (1972). Real Analysis and Probability, Academic Press, New York.

    Google Scholar 

  • Blight, B. and Ott, L. (1975). A Bayesian approach to model inadequacy for polynomial regression, Biometrika, 62, 79–88.

    Google Scholar 

  • Cox, D., Koh, E., Wahba, G. and Yandell, B. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models, Ann. Statist., 16, 113–119.

    Google Scholar 

  • deBoor, C. (1978). A Practical Guide to Splines, Springer, New York.

    Google Scholar 

  • Demmler, A. and Reinsch, C. (1975). Oscillation matrices with spline smoothing, Numer. Math., 24, 375–382.

    Google Scholar 

  • Ferguson, T. (1967). Mathematical Statistics, Academic Press, New York.

    Google Scholar 

  • Green, P., Jennison, C. and Seheult, A. (1985). Analysis of field experiments by least squares smoothing, J. Roy. Statist. Soc. Ser. B, 47, 299–315.

    Google Scholar 

  • Hansberry, T. R. and Richardson, C. H. (1935). A design for testing technique in codling moth spray experiments, Iowa State Coll. J. Sci., 10, 27–36.

    Google Scholar 

  • Kotz, S., Johnson, N. and Boyd, D. (1970). Distributions in Statistics: Continuous Univariate Distributions, Vol. 2, Wiley, New York.

    Google Scholar 

  • Lehmann, E. (1959). Testing Statistical Hypotheses, Wiley, New York.

    Google Scholar 

  • Lyche, T. and Schumaker, L. (1973). Computation of smoothing and interpolating natural splines via local bases, SIAM J. Numer. Anal., 10, 1027–1038.

    Google Scholar 

  • Rao, C. R. (1973). Linear Statistical Inference and Its Applications, Wiley, New York.

    Google Scholar 

  • Rice, J. (1984). Bandwidth choice for nonparametric regression, Ann. Math. Statist., 12, 1215–1230.

    Google Scholar 

  • Ruben, H. (1962). Probability content of regions under spherical normal distributions IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables, Ann. Math. Statist., 33, 542–570.

    Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components, Biometrika, 2, 110–114.

    Google Scholar 

  • Shepp, L. A. (1966). Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist., 37, 321–354.

    Google Scholar 

  • Shibata, R. (1981). An optimal selection of regression variables, Biometrika, 68, 45–54.

    Google Scholar 

  • Smith, A. F. M. (1973). Bayes estimates in one-way and two-way models, Biometrica, 60, 319–329.

    Google Scholar 

  • Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods, The Iowa State University Press, Iowa.

    Google Scholar 

  • Steinberg, D. (1983). Bayesian model for response surface and their implications for experimental design, Thesis, Department of Statistics, University of Wisconsin-Madison, Wisconsin.

  • Utreras, F. (1983). Natural spline functions, their associated eigenvalue problem, Numer. Math., 42, 107–117.

    Google Scholar 

  • Wahba, G. (1978). Improper priors, spline smoothing, and the problem of guarding against model errors in regression, J. Roy. Statist. Soc. Ser. B, 49, 364–372.

    Google Scholar 

  • Wecker, W. E. and Ansley, C. F. (1983). The signal extraction approach to non-linear regression and smoothing, J. Amer. Statist. Assoc., 78, 81–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This author's research was supported by the National Science Foundation under grants numbered DMS-8202560 and DMS-8603083.

About this article

Cite this article

Cox, D., Koh, E. A smoothing spline based test of model adequacy in polynomial regression. Ann Inst Stat Math 41, 383–400 (1989). https://doi.org/10.1007/BF00049403

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049403

Key words and phrases

Navigation