Skip to main content
Log in

A minimum average risk approach to shrinkage estimators of the normal mean

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For the problem of estimating the normal mean μ based on a random sample X 1,...,X n when a prior value μ0 is available, a class of shrinkage estimators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqdbaGafqiVd0MbaKaaaaGccaqGGaGaaiikaiaa% dUgacaGGPaGaeyypa0Jaam4AaiaacIcadaqfqaqabKqaahaacaqGUb% aaleqaneaacaqGubaaaOGaaiykaiaabccadaqfqaqabKqaahaacaWG% UbaaleqaneaaceqGybGbaebaaaGccaqGGaGaey4kaSIaaeiiaiaacI% cacaaIXaGaaeiiaiabgkHiTiaabccacaWGRbGaaiikamaavababeqc% baCaaiaab6gaaSqab0qaaiaabsfaaaGccaGGPaGaaiykamaavababe% qcbaCaaiaad6gaaSqab0qaaiabeY7aTbaaaaa!5615!\[\mathop {\hat \mu }\nolimits_n {\rm{ }}(k) = k(\mathop {\rm{T}}\nolimits_{\rm{n}} ){\rm{ }}\mathop {{\rm{\bar X}}}\nolimits_n {\rm{ }} + {\rm{ }}(1{\rm{ }} - {\rm{ }}k(\mathop {\rm{T}}\nolimits_{\rm{n}} ))\mathop \mu \nolimits_n \] is considered, where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqcdawaaiaadsfaaaGccaqGGaGaaeypaiaabcca% caWGUbWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccaGGOaWaa0% aaaeaacaWGybaaamaaBaaajeaWbaGaamOBaaWcbeaakiaabccacqGH% sislcaqGGaWaaubeaeqajeaWbaGaaGimaaWcbeqdbaGaaeiVdaaaki% aacMcacaqGGaGaae4laiabeccaGiabeo8aZbaa!4C33!\[\mathop T\nolimits_n {\rm{ = }}n^{1/2} (\overline X _n {\rm{ }} - {\rm{ }}\mathop {\rm{\mu }}\nolimits_0 ){\rm{ /}} \sigma \] and k is a weight function. For certain choices of k, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqdbaGafqiVd0MbaKaaaaGccaqGGaGaaiikaiaa% dUgacaGGPaaaaa!3CEE!\[\mathop {\hat \mu }\nolimits_n {\rm{ }}(k)\] coincides with previously studied preliminary test and shrinkage estimators. We consider choosing k from a natural non-parametric family of weight functions so as to minimize average risk relative to a specified prior p. We study how, by varying p, the MSE efficiency (relative to \-X) properties of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqdbaGafqiVd0MbaKaaaaGccaqGGaGaaiikaiaa% dUgacaGGPaaaaa!3CEE!\[\mathop {\hat \mu }\nolimits_n {\rm{ }}(k)\] can be controlled. In the process, a certain robustness property of the usual family of posterior mean estimators, corresponding to the conjugate normal priors, is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, (eds. B. N.Petrov and F.Csaki), 267–281, Akademiai, Budapest.

    Google Scholar 

  • Ash, R. B. (1972). Real Analysis and Probability, Academic Press, New York.

    Google Scholar 

  • Hirano, K. (1977). Estimation procedures based on preliminary test, shrinkage technique and information criterion, Ann. Inst. Statist. Math., 29, 21–34.

    Google Scholar 

  • Inada, K. (1984). A minimax regret estimator of a normal mean after preliminary test, Ann. Inst. Statist. Math., 36, 207–215.

    Google Scholar 

  • Mehta, J. S. and Srinivasan, R. (1971). Estimation of the mean by shrinkage to a point, J. Amer. Statist. Assoc., 66, 86–90.

    Google Scholar 

  • Srivastava, V. K. and Ramkaran (1982). A class of shrunken estimates of the normal mean, J. Statist. Plann. Inference, 6, 297–299.

    Google Scholar 

  • Thompson, J. R. (1968). Some shrinkage techniques for estimating the mean, J. Amer. Statist. Assoc., 63, 113–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hawkins, D.L., Han, CP. A minimum average risk approach to shrinkage estimators of the normal mean. Ann Inst Stat Math 41, 347–363 (1989). https://doi.org/10.1007/BF00049401

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049401

Key words and phrases

Navigation