Skip to main content
Log in

On laplace continued fraction for the normal integral

  • Distributions
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The Laplace continued fraction is derived through a power series. It provides both upper bounds and lower bounds of the normal tail probability % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x), it is simple, it converges for x>0, and it is by far the best approximation for x≥3. The Laplace continued fraction is rederived as an extreme case of admissible bounds of the Mills' ratio, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x)/ϕ(x), in the family of ratios of two polynomials subject to a monotone decreasing absolute error. However, it is not optimal at any finite x. Convergence at the origin and local optimality of a subclass of admissible bounds are investigated. A modified continued fraction is proposed. It is the sharpest tail bound of the Mills' ratio, it has a satisfactory convergence rate for x≥1 and it is recommended for the entire range of x if a maximum absolute error of 10-4 is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A. (eds.) (1972). Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C.

    Google Scholar 

  • Birnbaum, Z. W. (1942). An inequality for Mills' ratio. Ann. Math. Statist., 13, 245–246.

    Google Scholar 

  • Boyd, A. V. (1959). Inequalities for Mills' ratio, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 6, 44–46.

    Google Scholar 

  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., Wiley, New York.

    Google Scholar 

  • Gordon, R. D. (1941). Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the arqument, Ann. Math. Statist., 12, 364–366.

    Google Scholar 

  • Gray, H. L. and Schucany, W. R. (1968). On the evaluation of distribution functions, J. Amer. Statist. Assoc., 63, 715–720.

    Google Scholar 

  • Gross, A. J. and Hosmer, D. W. (1978). Approximating tail areas of probability distributions Ann. Statist., 6, 1352–1359.

    Google Scholar 

  • Hastings, C. (1955). Approximations for Digital Computers, Princeton University Press, New Jersey.

    Google Scholar 

  • Kendall, M. and Stuart, A. (1977). The Advanced Theory of Statistics, Vol. 1, 4th ed., MacMillan, New York.

    Google Scholar 

  • Kerridge, D. F. and Cook, G. W. (1976). Yet another series for the normal integral, Biometrika, 63, 401–403.

    Google Scholar 

  • Komatu, Y. (1955). Elementary inequalities for Mills' ratio, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 4, 69–70.

    Google Scholar 

  • Laplace, P. S. (1785). Memóire sur les approximations des formules qui sont fonction de trèsgrands nombres, 1–88, Histoire de l'Académie Royale des Sciences de Paris.

  • Laplace, P. S. (1805). Traité de Mécanique Celeste, Vol. 4, Courcier, Paris.

    Google Scholar 

  • Laplace, P. S. (1812). Théorie Analytique de Probabilitiés, Vol. 2, Courcier, Paris.

    Google Scholar 

  • Mitrinović, D. S. (1970). Analytic Inequalities, Springer, New York.

    Google Scholar 

  • Patel, J. K. and Read, C. B. (1982). Handbook of the Normal Distribution, Dekker, New York.

    Google Scholar 

  • Pollak, H. O. (1956). A remark on “Elementary inequalities for Mills' ratio” by Y. Komatu, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 4, p. 110.

  • Pólya, G. (1949). Remarks on computing the probability integral in one and two dimensions, Proc. First Berkeley Symp. on Math. Statist. Prob., 63–78, Univ. of California Press, Berkeley.

    Google Scholar 

  • Ruben, H. (1963). A convergent asymptotic expansion for Mills' ratio and the normal probability integral in terms of rational functions, Math. Ann., 151, 355–364.

    Google Scholar 

  • Ruben, H. (1964). Irrational fraction approximations to Mills' ratio, Biometrika, 51, 339–345.

    Google Scholar 

  • Sampford, M. R. (1953). Some inequalities on Mills' ratio and related functions, Ann. Math. Statist., 24, 130–132.

    Google Scholar 

  • Shenton, L. R. (1954). Inequalities for the normal integral including a new continued fraction, Biometrika, 41, 177–189.

    Google Scholar 

  • Sheppard, W. F. (1939). The Probability Integral, British Association for the Advancement of Science, Mathematical Tables VII, Cambridge University Press, U.K.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The efforts of the author were supported by the NSERC of Canada.

About this article

Cite this article

Lee, CI.C. On laplace continued fraction for the normal integral. Ann Inst Stat Math 44, 107–120 (1992). https://doi.org/10.1007/BF00048673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048673

Key words and phrases

Navigation