Skip to main content
Log in

Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transgenic tobacco plants expressing an antisense RNA targeted against tomato golden mosaic virus (TGMV) show reduced/no symptoms and viral DNA accumulation upon TGMV infection [5]. The targeted region includes the AL1 gene, encoding an essential viral replication protein. This DNA sequence is conserved in various other geminiviruses, suggesting they too might show inhibition of replication in these plants. We infected leaf material with African cassava mosaic virus (ACMV) and beet curly top virus (BTCV) and saw a 4-fold reduction of BCTV, but not ACMV, DNA accumulation, compared to controls. The equivalent regions of BCTV and ACMV show similar overall homology to the TGMV target (63% and 64% respectively), but within this, BCTV displays a 280 nucleotide region of high homology (82%). In contrast, for ACMV, the homology is more dispersed. This indicates that a critical stretch of good complementarity is needed to block expression of the target mRNA, that is effective even within along antisense transcript. These studies indicate the potential for developing a multifunctional antisense cassette.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. von Arnim A, Stanley J: Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology 186: 286–293 (1992).

    Article  PubMed  Google Scholar 

  2. Briddon RW, Watts J, Markham PG, Stanley J: The coat protein of beet curly top virus is essential for infectivity. Virology 172: 628–633 (1989).

    Article  PubMed  Google Scholar 

  3. Cabanes-Bastos E, Bejarano ER, Lichtenstein CP: Identification of DNA sequences of tomato golden mosaic virus required for geminiviral replication and for binding by the AL1 replication protein. Submitted.

  4. Davies JW, Stanley J: Geminivirus genes and vectors. Trends Genet 5: 77–81 (1989).

    Article  PubMed  Google Scholar 

  5. Day AG, Bejarano ER, Burrell M, Buck K, Lichtenstein C: Expression of anti-sense RNA in transgenic tobacco plants confers resistance to geminivirus infection. Proc Natl Acad Sci USA 88: 6721–6725 (1991).

    PubMed  Google Scholar 

  6. Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  7. Elmer JS, Brand L, Sunter G, Gardiner WE, Bisaro D, Rogers SG: Genetic analysis of the tomato golden mosaic virus II. The product of the AL1 coding sequence is required for replication. Nucl Acids Res 16: 7043–7060 (1988).

    PubMed  Google Scholar 

  8. Etessami P, Saunders K, Watts J, Stanley J: Mutational analysis of complementary-sense genes of African casava mosaic-virus DNA-A. J Gen Virol 72: 1005–1012 (1991).

    PubMed  Google Scholar 

  9. Fontes EPB, Luckow VA, Hanley-Bowdoin L: A geminivirus replication protein is a sequence specific DNA binding protein. Plant Cell 4: 597–608 (1992).

    Article  PubMed  Google Scholar 

  10. Frischmuth S, Frischmuth T, Leatham JR, Stanley J: Transcriptional analysis of the virion sense genes of the geminivirus beet curly top virus. Virology 197, in press (1993).

  11. Hamilton WD, Stein VE, Coutts RH, Buck KW: Complete nucleotide sequence of the infectious clones DNA components of tomato golden mosaic virus: potential coding regions and regulatory sequences. EMBO J 3: 2197–2205 (1984).

    Google Scholar 

  12. Hormuzdi Bisaro D: Genetic analysis of beet curly top virus: evidence for three virion sense genes involved in movement and regulation of single-stranded and double-stranded DNA levels. Virology 193: 900–909 (1993).

    Article  PubMed  Google Scholar 

  13. Klinkenberg FA, Ellwood S, Stanley J: Fate of African cassava mosaic virus coat protein deletion mutants after agroinoculation. J Gen Virol 70: 1837–1844 (1989).

    Google Scholar 

  14. Klinkenberg FA, Stanley J: Encapsidation and spread of African cassava mosaic virus DNA A in the absence of DNA B when agroinoculated to Nicotiana benthamiana. J Gen Virol 71: 1409–1412 (1990).

    Google Scholar 

  15. Lazarowitz SG, Wu LC, Rogers SG, Elmer JS: Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4: 799–809 (1992).

    Article  PubMed  Google Scholar 

  16. Lazarowitz SG: Geminiviruses: genome structure and gene function. Crit Rev Plant Sci 11: 327–349 (1992).

    Google Scholar 

  17. Matousek J, Trnena L, Rakousky S, Riesner D: Inhibition of potato spindle tuber viroid (PSTVd) infection with antisense RNA transcripts. J Phytopath (in press).

  18. Murray JAH: Antisense RNA and DNA: Modern Cell Biology Series. John Wiley (1992).

  19. Nellen W, Lichtenstein CP: What makes an mRNA antisense-itive? Trends Biochem 18: 419–423.

  20. Rogers SG, Bisaro DM, Horsch RB, Fraley RT, Hoffmann NL, Brand L, Elmer JS, Lloyd AM: Tomato golden mosaic virus A component DNA replicates autonomously in transgenic plants. Cell 45: 593–600 (1986).

    Article  PubMed  Google Scholar 

  21. Sambrook S, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  22. Stanley J Gay: Nucleotide sequence of cassava latent virus DNA. Nature 301: 260–262 (1983).

    Google Scholar 

  23. Stanley J, Markham PG, Callis RJ, Pinner MS: The nucleotide sequence of an infrctious cloned geminivirus, beet curly top virus. EMBO J 5: 1761–1767 (1986).

    Google Scholar 

  24. Stanley J, Leatham JR: A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190: 506–509 (1992).

    Article  PubMed  Google Scholar 

  25. Sunter G, Bisaro DM: Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology 180: 416–419 (1991).

    Article  PubMed  Google Scholar 

  26. Sunter G, Hartitz MD, Hormuzdi SG, Brough CL, Bisaro DM: Genetic analysis of tomato golden mosaic virus ORF-AL2 is required for coat protein accumulation while ORF-AL3 is necessary for efficient DNA replication. Virology 179: 69–77 (1990).

    PubMed  Google Scholar 

  27. Sunter G, Bisaro DM: Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occures at the level of transcription. Plant Cell 4: 1321–1331 (1992).

    Article  PubMed  Google Scholar 

  28. Tabler M: Antisense RNA in plants: a tool for analysis and suppression of gene function. In: Roubelakis-Angelakis KA, Tran Thanh Van K (eds) Morphogenesis in Plants: Molecular Approaches. NATO ASI Series. Plenum, London/New York (in press).

  29. Thommes P, Osman TAM, Hayes RJ, Buck KW: TGMV replication protein AL1 preferentially binds to single-stranded DNA from the common region. FEBS 319: 95–99 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejarano, E.R., Lichtenstein, C.P. Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses. Plant Mol Biol 24, 241–248 (1994). https://doi.org/10.1007/BF00040592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040592

Key words

Navigation