Skip to main content
Log in

Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The quantitative and qualitative effects of light on carotenoid production by Spirulina were studied. Maximum total carotenoid production was measured in cells grown under white light at an irradiance of 432 μmol photon m−2 s−1, the onset of light saturation for this organism as determined by growth rates. A true maximum may exist at irradiances above 1500 μmol photon m−2 s−1 under white light.

Individual carotenoids responded differently to light conditions. Under white light, β-carotene and echinenone were most abundant at the lowest and highest irradiance levels tested. Myxoxanthophyll and lutein/zeaxanthin did not change over the same irradiance range. Under red and blue light, we found decreased values of myxoxanthophyll, while β-carotene increased and lutein/zeaxanthin and echinenone showed little change. In general, maximum carotenoid production requires optimization of the culture conditions that favor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braumann T, Grimme LH (1981) Reversed-phase liquid chromatography of chlorophylls and carotenoids. Biochim. Biophys. Acta 637: 8–17.

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Biol. Review, December 1983: 551–578.

  • Evans EH, England R, Manwaring J (1983) Structure and variations in photosystem II of cyanobacteria. In Papageorgiou GC, Packer L (eds), Photosynthetic Prokaryotes. Elsevier Science Publishing Co., Inc., N.Y., 175–183.

    Google Scholar 

  • Falkowski PG (1980) Light-shade adaptation in phytoplankton. In Falkowski PG (ed.), Primary Productivity in the Sea. Plenum Press, N.Y., 99–119.

    Google Scholar 

  • Fiksdahl A, Foss P, Liaaen-Jensen S (1983) Carotenoids of blue-green algae-11. Carotenoids of chromatically-adapted Cyanobacteria. Comp. Biochem. Physiol. 76B: 599–601.

    Google Scholar 

  • Fork DC (1977) Photosynthesis. In Smith KC (ed.), The Science of Photobiology. Plenum Publishing Co., N.Y., 329–369.

    Google Scholar 

  • Fujita Y, Hattori A (1960) Effect of chromatic lights on phycobilin formation in a blue-green alga, Tolypothrix tenuis. Pl. Cell Physiol. 1: 293–303.

    Google Scholar 

  • Goedheer JC (1969) Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim. Biophys. Acta 172: 252–265.

    PubMed  Google Scholar 

  • Goodwin TW (1980) Functions of carotenoids. In Goodwin TW (ed.), The Biochemistry of the Carotenoids, Chapter 3. Chapman and Hall, N.Y., 77–95.

    Google Scholar 

  • Gressel J (1979) Blue light photoreception. Photochem. Photobiol. 30: 749–754.

    Google Scholar 

  • Hattori A, Fujita Y (1959) Formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis, as induced by illumination with colored lights. J. Biochem. 46: 521–524.

    Google Scholar 

  • Hladik J, Pancoska P, Sofrova D (1983) Cyanobacterial chlorophyll-protein complexes. The role of carotenoids in their assembly. In Papageorgiou GC, Packer L (eds), Photosynthetic Prokaryotes. Elsevier Science Publishing Co., Inc., N.Y., 103–118.

    Google Scholar 

  • Holt TK, Krogmann DW (1981) A carotenoid-protein from cyanobacteria. Biochim. Biophys. Acta 637: 408–414.

    Google Scholar 

  • Jeffrey SW (1981) Responses to light in aquatic plants. In Lange OL, Noble PS, Osmond CB, Ziegler H (eds), Encyclopedia of Plant Physiology, Volume 12A. Springer-Verlag, Verlin, 249–276.

  • Jürgens UJ, Weckesser J. (1985) Carotenoid-containing outer membrane of Synechocystis sp. strain PCC6714. J. Bact. 164: 384–389.

    PubMed  Google Scholar 

  • Kawamura M, Mimuro M, Fujita Y (1979) Quantitative relationship between two reaction centers in the photosynthetic system of blue-green algae. Pl. Cell Physiol. 20: 697–705.

    Google Scholar 

  • Kawamura M, and Fujita Y (1983) Some characteristics of photosynthetic electron flow system in blue-green algae Cyanobacteria). In Papageorgiou GC, Parker L (eds), Photosynthetic Prokaryotes. Elsevier Science Publishing Co., Inc., N.Y., 127–145.

    Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure and Appl. Chem. 51: 649–660.

    Google Scholar 

  • Mimuro M, Fujita Y (1977) Estimation of chlorophyll a distribution in the photosynthetic pigment systems I and II of the blue-green alga Anabaena variabilis. Biochim. Biophys. Acta 459: 376–389.

    PubMed  Google Scholar 

  • Myers J, Kratz WA (1955) Relation between pigment content and photosynthetic characteristics in a blue-green alga. J. Gen. Physiol. 39: 11–22.

    Article  PubMed  Google Scholar 

  • Ogawa T, Vernon LO, Mollenhauer HH (1969) Properties and structures of fractions prepared from Anabaena variabilis by the action of Triton X-100. Biochim. Biophys. Acta 172: 216–229.

    PubMed  Google Scholar 

  • Omata T, Murata N (1983) Isolation and characterization of the cytoplasmic membranes from the blue-green alga (Cyanobacterium) Anacystic nidulans. Plant Cell Physiol. 24: 1101–1112.

    Google Scholar 

  • Oquist G (1974) Distribution of chlorophyll between the two photoreactions in photosynthesis of the blue-green alga Anacystis nidulans grown at two different light intensities. Physiol. Plant. 30: 38–44.

    Google Scholar 

  • Palla JC, Busson F (1969) Etude des carotenoids de Spirulina platensis (Gom.) Geitler (Cyanophycées) C. R. Acad. Sc. Paris, 269: 1704–1707.

    Google Scholar 

  • Perry MJ, Talbot MC, Alberte RS (1981) Photoadaptation in marine phytoplankton: Response of the photosynthetic unit. Mar. Biol. 62: 91–101.

    Google Scholar 

  • Post AF, de Wit R, Mur LR (1985) Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J. Plank. Res. 7: 487–495.

    Google Scholar 

  • Raps S, Wyman K, Siegelman HW, Falkowski PG (1983) Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity. Plant Physiol. 72: 829–832.

    Google Scholar 

  • Rau W, Shrott EL (1979) Light mediated biosynthesis in plants Photochem. Photobiol. 30: 755–765.

    Google Scholar 

  • Resch CM, Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular Cyanobacteria. J. Bact. 155: 345–350.

    PubMed  Google Scholar 

  • Santillan C (1982) Mass production of Spirulina. Experientia 30: 40–43.

    Google Scholar 

  • Schmid GH, List H, Radunz A (1977) Inhibition of photosystem II-reactions in blue-green algae by the antisera to lutein and neoxanthin. Z. Naturforsch. 32c: 118–124.

    Google Scholar 

  • Senger H (1982) The effect of blue light on plants and microorganisms. Photochem. Photobiol. 35: 911–920.

    Google Scholar 

  • Senger H Briggs WR (1981) The blue light receptor(s): Primary reactions and subsequent metabolic changes. Photochem. Photobiol. Rev. 6: 1–38.

    Google Scholar 

  • Siefermann-Harms D (1980) The role of carotenoids in chloroplasts of higher plants. In Mazliak P, Beneviste P, Costes C, Douce R (eds), Biogenesis and function of plant lipids. Elsevier North-Holland Biochemical Press, Amsterdam, 331–340.

    Google Scholar 

  • Szalontai B, Csatorday K (1979) Changes in phycocyanincarotenoid association during nitrate starvation of Anacystis nidulans. Biochem. Biophys. Res. Comm. 88: 1294–1300.

    PubMed  Google Scholar 

  • Szalontai B. Van de Ven M (1981) Raman spectroscopic evidence for phycocyanin-carotenoid interaction in Anacyctis nidulans. FEBS Letters 131: 155–157.

    Article  Google Scholar 

  • Tanaka Y, Matsuguchi H, Katayama T (1974) Comparative biochemistry of carotenoids in algae-IV. Carotenoids in Cyanophyta, blue-green algae, Spirulina platensis. Mem. Fac. Fish., Kagoshima Univ. 23: 111–115.

    Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in Cyanobacteria. J. Bact. 130: 82–91.

    PubMed  Google Scholar 

  • Utkilen HC, Briseid T, Eriksson B (1983) Variation in photosynthetic membrane and pigment content with light intensity for Anacystis nidulans grown in continuous cultures. J. Gen. Microbiol. 129: 1717–1720.

    Google Scholar 

  • Vesk M, Jeffrey SW (1977) Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J. Phycol. 13: 280–288.

    Google Scholar 

  • Virgin HI (1966) Carotenoid synthesis in leaves of wheat after irradiation by red light. Physiol. Plant. 19: 40–46.

    Google Scholar 

  • Zarrouk C (1966) Contribution a l'étude d'une cyanophycée sur la croissance de la photosynthese de Spirulina maxima (Stech et Gardner). Thèse, Paris.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author for Correspondence

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olaizola, M., Duerr, E.O. Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis . J Appl Phycol 2, 97–104 (1990). https://doi.org/10.1007/BF00023370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023370

Key words

Navigation