Skip to main content
Log in

A numerical investigation on the geometry dependence of the crack growth resistance in CT specimens

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The influence of the specimen thickness B and the ligament length b on the J R -curves is numerically investigated for CT specimens. The thickness effect is taken into account with 2-D analyses by dividing a plain sided specimen into a plane stress part and a plane strain part. The fracture process is controlled by experimentally determined critical values of the crack tip opening displacement for crack growth initiation (CTODi) and the crack tip opening angle for stable crack growth (CTOAC). It is shown that for the global behaviour of a plain sided specimen, the B/b ratio is essential. The difference between the geometry dependence of the initiation value of the J-integral and the geometry dependence of the slope of the J R -curves is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Jun, Deng Zengjie, Li Zhonghua and Tu Mingjing, Engineering Fracture Mechanics 34 (1989) 637–643.

    Article  Google Scholar 

  2. Sun Jun, Deng Zengjie, Li Zhonghua and Tu Mingjing, Engineering Fracture Mechanics 34 (1989) 413–418.

    Article  Google Scholar 

  3. D.-Z. Sun and W. Schmitt, in Proceedings of the 5th International Conference on Numerical Methods in Fracture Mechanics, A.R. Luxmoore and D.R.J. Owen (eds.) Pineridge Press, Swansea U.K. (1990) 275–286.

    Google Scholar 

  4. C.E. Turner, in Fracture Behaviour and Design of Materials and Structures, Proceedings of ECF 8, Vol. II, EMAS U.K. (1990) 933–968.

    Google Scholar 

  5. C.E. Turner, in Fracture Mechanics: Twenty-Fourth Symposium, ASTM (1992), to be published.

  6. O. Kolednik, International Journal of Fracture 63 (1993) 263–274.

    Google Scholar 

  7. C.E. Turner and O. Kolednik, Fatigue & Fracture of Engineering Materials and Structures, submitted.

  8. C.E. Turner, A report of computational studies on R-curves and COA. Private communication (1992).

  9. D. Siegele, Computers and Structures 32 (1989) 639–645.

    Article  Google Scholar 

  10. W. Schmitt, G. Nagel and D.-Z. Sun, in Proceedings of the 3rd International Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth, Vol. 2, W.H. Gullen (ed.) (1990) 93–108.

  11. G.X. Shan, O. Kolednik, H.P. Stüwe and F.D. Fischer, Engineering Fracture Mechanics 41 (1992) 625–633.

    Article  Google Scholar 

  12. G.X. Shan, O. Kolednik, F.D. Fischer and H.P. Stüwe, Engineering Fracture Mechanics 45 (1993) 99–106.

    Article  Google Scholar 

  13. Standard test method for J IC, a measure of fracture toughness, in ASTM E813-87, Annual Book of ASTM-Standards, Section 3, Vol. 03.01, Philadelphia, PA (1987) 968–990.

  14. G.P. Gibson, S.G. Druce and C.E. Turner, International Journal of Fracture 32 (1987) 219–240.

    Google Scholar 

  15. G.P. Gibson and S.G. Druce, in Advances in Fracture Research, Proceedings of ICF 7, Vol. 1, K. Salama, K. Ravi-Chandar, D.M.R. Taplin and P. Rama Rao (eds.) Pergamon Press (1989) 181–188.

  16. X.M. Chen and H.G. Hahn, Engineering Fracture Mechanics 44 (1993) 895–912.

    Article  Google Scholar 

  17. O. Kolednik, Engineering Fracture Mechanics 38 (1991) 403–412.

    Article  Google Scholar 

  18. O. Kolednik, Practical Metallography 18 (1981) 562–573.

    Google Scholar 

  19. O. Kolednik and H.P. Stüwe, Engineering Fracture Mechanics 21 (1985) 145–155.

    Article  Google Scholar 

  20. G.X. Shan, Fortschrittberichte VDI, Reihe 18, Mechanik/Bruchmechanik, Nr. 112, VDI-Verlag, Düsseldorf (1992).

    Google Scholar 

  21. H.D. Hibbitt, B.I. Karlsson and E.P. Sorense, ABAQUS User's Manual, Vers.4.7. (1988).

  22. C.F. Shih, Tables of Hutchinson-Rice-Rosengren singular field quantities, Materials Research Laboratory, Brown University, MRL E-147 (1983).

  23. H.G. deLorenzi and C.D. Shih, International Journal of Fracture 21 (1983) 195–220.

    Google Scholar 

  24. E. Sommer, in Advances in Fracture Research, Proceedings of ICF 7, Vol. 3, K. Salama, K. Ravi-Chandar, D.M.R. Taplin and P. Rama Rao (eds.) Pergamon Press (1989) 1999–2020.

  25. C.L. Hom and R.M. McMeeking, International Journal of Fracture 45 (1990) 103–122.

    Google Scholar 

  26. T. Nakamura and D.M. Parks, Journal of the Mechanics and Physics of Solids 38 (1990) 787–812.

    Article  Google Scholar 

  27. R. Narasimhan and A.J. Rosakis, Transactions of ASME, Journal of Applied Mechanics (Series E) 57 (1990) 607–617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, G.X., Kolednik, O. & Fischer, F.D. A numerical investigation on the geometry dependence of the crack growth resistance in CT specimens. Int J Fract 66, 173–187 (1994). https://doi.org/10.1007/BF00020082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020082

Keywords

Navigation