Skip to main content
Log in

Location of copper in larvae of Plectrocnemia conspersa (Curtis) (Trichoptera) exposed to elevated metal concentrations in a mine drainage stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Using histological techniques together with transmission electron microscopy and X-ray microanalysis, copper-containing granules (which also contain significant amounts of sulphur) have been observed in the cells of the malpighian tubules and in the subcuticular region of larvae of Plectrocnemia conspersa. It is suggested that the granules in both these regions are primarily pigment granules, which provide a mechanism for taking potentially toxic concentrations of copper (and possibly other metals) out of circulation. This mechanism of metal tolerance may in part account for the reported occurrence of larvae of P. conspersa in waters with elevated concentrations of trace metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage, P. D., 1980. The effects of mine drainage and organic enrichment on benthos in the River Nent system, Northern Pennines. Hydrobiologia 74: 119–128.

    Google Scholar 

  • Ballan-Dufrançais, C., A. Y. Jeantet & M. R. Martoja, 1971. Composition ionique et signification physiologique des accumulations minérales de l'intestin moyen des Insectes. C. r. Acad. Sci., Paris 273: 173–176.

    Google Scholar 

  • Brown, B. E., 1977. Uptake of copper and lead by a metal-tolerant isopod Asellus meridianus Rac. Freshwat. Biol. 7: 235–244.

    Google Scholar 

  • Brown, B. E., 1982. The form and function of metal-containing ‘granules’ in invertebrate tissues. Biol. Rev. 57: 621–667.

    Google Scholar 

  • Bryan, G. W., 1974. Adaptation of an estuarine polychaete to sediments containing high concentrations of heavy metals. In F. J. Vernberg & W. B. Vernberg (eds), Pollution and physiology of marine organisms. Academic Press, New York: 123–135.

    Google Scholar 

  • Burrows, I. G. & B. A. Whitton, 1983. Heavy metals in water, sediments and invertebrates from a metal-contaminated river free of organic pollution. Hydrobiologia 106: 263–273.

    Google Scholar 

  • Darlington, S. T., A. M. Gower & L. Ebdon, 1986. The measurement of copper in individual aquatic insect larvae. Envir. Technol. Letters 7: 141–146.

    Google Scholar 

  • Darlington, S. T., A. M. Gower & L. Ebdon, 1987. Studies on Plectrocnemia conspersa (Curtis) in copper contaminated streams in South West England. In M. Bournaud & H. Tachet (eds), Proc. of the 5th Int. Symp. on Trichoptera. Junk, Dordrecht, The Netherlands: 353–357.

    Google Scholar 

  • George, S. G., B. J. S. Pirie, A. R. Cheyne, T. L. Coombs & P. T. Grant, 1978. Detoxification of metals by marine bivalves: An ultra-structural study of the compartmentation of copper and zinc in the oyster, Ostrea edulis. Mar. Biol. 45: 147–156.

    Google Scholar 

  • Hildrew, A. G. & C. R. Townsend, 1976. The distribution of two predators and their prey in an iron rich stream. J. anim. Ecol. 45: 41–57.

    Google Scholar 

  • Icely, J. D. & Nott, 1980. Accumulation of copper within the ‘hepatopancreatic’ caeca of Corophium volutator (Crustacea: Amphipoda). Mar. Biol. 57: 193–199.

    Google Scholar 

  • Kikkawa, H., Z. Ogita & S. Fujito, 1955. Nature of pigments derived from tyrosine and tryptophan in animals. Science 121: 43–47.

    Google Scholar 

  • Lachenmayer, E., P. Kunze & J. Holzinger, 1985. Schwermetalle in Nahrungstieen and Eiern der Wasseramsel (Cinclus cinclus) and Gebirgsstelze (Motacilla cinerea) im Kirchheimer Raum. Okol. Vogel 7: 327–351.

    Google Scholar 

  • Lhonoré, D., 1973. Données histophysiologiques sur le développement post-embryonnaire d'un insecte Trichoptère. Ann. Limnol. 9: 157–176.

    Google Scholar 

  • Namminga, H. & J. Wilhm, 1977. Heavy metals in water, sediments, and chironomids. J. Wat. Pollut. Cont. Fed. 49: 1725–1731.

    Google Scholar 

  • Smock, L. A., 1983. Relationships between metal concentrations and organism size in aquatic insects. Freshwat. Biol. 13: 313–321.

    Google Scholar 

  • Stoner, J. H., A. S. Gee & K. R. Wade, 1984. The effects of acidification on the ecology of streams in the Upper Tywi catchment in West Wales. Envir. Pollut. (A) 35: 125–157.

    Google Scholar 

  • Tapp, R. L. & Hockaday, 1977. Combined histochemical and X-ray microanalytical studies on the copper-accumulating granules in the mid-gut of larval Drosophila. J. Cell Sci. 26: 201–215.

    Google Scholar 

  • Walker, G., 1977. ‘Copper’ granules in the barnacle Balanus balanoides. Mar. Biol. 39: 343–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darlington, S.T., Gower, A.M. Location of copper in larvae of Plectrocnemia conspersa (Curtis) (Trichoptera) exposed to elevated metal concentrations in a mine drainage stream. Hydrobiologia 196, 91–100 (1990). https://doi.org/10.1007/BF00008896

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008896

Key words

Navigation