Skip to main content
Log in

The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers

  • Contributions from the workshop
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Paradoxically, although turbulence characterises the open water environments of planktonic organisms in lakes, rivers and seas, most species of phytoplankton are smaller than the size of the smallest eddies dissipating the energy and, so, must function in an immediate medium which is inherently viscous. Intensively mixed systems, such as wind-stirred shallow lakes, rivers and estuaries, however, constantly readjust the vertical position of suspended algae and, often, other non-living, light-absorbing particles with the effect that the light field to which the algae are subject is erratic and the received day-time light dose is aggregately depressed: cells need to photoadapt accordingly. In fluvial environments the additional constraint of rapid, horizontal, supposedly unidirectional, transport is applied, requiring the attribute of rapid processing of primary products and cell replication. Significant downstream recruitment, however, is benefitted by the presence of so-called ‘dead-zones’ which retain water (and suspended plankton) sufficiently to accommodate additional cell divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification of cyanophytes. 3-Oscillatoriales. Arch. Hydrobiol. (Suppl.) 80: 327–427.

    Google Scholar 

  • Bailey-Watts, A.E., A. Kirika, L. May & D.H. Jones, 1990. Changes in phytoplankton over various time scales in a shallow, eutrophic loch: the Loch Leven experience with special reference to the influence of flushing rate. Freshwat. Biol. 23: 85–111.

    Google Scholar 

  • Berger, C., 1984. Consistent blooming of Oscillatoria agardhii Gom. in shallow hypertrophic lakes. Verh. int. Ver. Limnol. 22: 910–916.

    Google Scholar 

  • Berger, C., 1989. In situ primary production, biomass and light regime in the Wolderwijd, the most stable Oscillatoria agardhii lake in the Netherlands. Hydrobiologia 185: 233–244.

    Google Scholar 

  • Butcher, R.W., 1924. The plankton of the River Wharfe. Naturalist, Hull, April–June, 175–214.

  • Canelli, E. & G.W. Fuhs, 1976. Effects of the sinking rate of two diatoms (Thalassiosira spp.) on uptake from low concentrations of phosphate. J. Phycol. 12: 93–99.

    Google Scholar 

  • Carling, P.A., 1992a. In-stream hydraulics and sediment transport. In P. Calow & G.E. Petts (eds), The rivers handbook. Volume 1. Blackwell Scientific Publications, Oxford: 101–125.

    Google Scholar 

  • Carling, P.A., 1992b. The nature of the fluid boundary layer and the selection of parameters for benthic ecology. Freshwat. Biol. 28: 273–282.

    Google Scholar 

  • Denman, K.L. & A.E. Gargett, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801–815.

    Google Scholar 

  • Descy, J.-P., 1987. Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol. (Suppl.) 78: 225–245.

    Google Scholar 

  • Falkowski, P.G., 1980. Light-shade adaptation in marine phytoplankton. In P.G. Falkowski, Primary productivity in the sea. Plenum, New York: 99–119.

    Google Scholar 

  • Falkowski, P.G., 1984. Physiological responses of phytoplankton to natural light regimes. J. Plankton Res. 6: 295–307.

    Google Scholar 

  • Fritsch, F.E., 1902. Algological notes III. Preliminary report on the phytoplankton of the Thames. Ann. Bot. 16: 1–9.

    Google Scholar 

  • Gavis, J., 1976. Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth. J. mar. Res. 34: 161–179.

    Google Scholar 

  • Gibson, C.E., 1984. Sinking rates of planktonic diatoms in an unstratified lake: a comparison of field and laboratory observations. Freshwat. Biol. 14: 631–638.

    Google Scholar 

  • Gibson, C.E., R.B. Wood, E.L. Dickson & D.M. Jewson, 1971. The succession of phytoplankton in Lough Neagh, 1968–1970. Mitt. int. Ver. Limnol. 19: 146–160.

    Google Scholar 

  • Greenberg, A.E., 1964. Plankton of the Sacramento River. Ecology 45: 40–49.

    Google Scholar 

  • Harris, G.P. (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebnisse der Limnologie 10: 1–171.

    Google Scholar 

  • Hecky, R.E. & H.J. Kling, 1981. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content and spatio-temporal distribution. Limnol. Oceanogr. 26: 548–564.

    Google Scholar 

  • Holmes, N.T.H. & B.A. Whitton, 1981. Phytoplankton of four rivers, the Tyne, Wear, Tees and Swale. Hydrobiologia 80: 111–127.

    Google Scholar 

  • Jones, R.I. & R.J. Barrington, 1985. A study of the suspended algae in the River Derwent, Derbyshire, UK. Hydrobiologia 128: 255–264.

    Google Scholar 

  • Kofoid, C.A., 1903. The plankton of the Illinois River and its basin. Part I. Quantitative investigations and general results. Bull. Illinois State Laboratory Nat. Hist. 6: 95–629.

    Google Scholar 

  • Köhler, J., 1993. Growth, production and losses of phytoplankton in the lowland River Spree. I. Population dynamics. J. Plankton Res. 15: 335–349.

    Google Scholar 

  • Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30: 299–303.

    Google Scholar 

  • Lack, T.J., 1971. Quantitative studies on the phytoplankton of the rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 213–224.

    Google Scholar 

  • Levich, V.G., 1962. Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs, 700 pp.

    Google Scholar 

  • Liepolt, R., 1961. Limnologische Forschungen im Osterreichen Donaustrom. Verh. int. Ver. Limnol. 14: 422–429.

    Google Scholar 

  • Liere, L. van & L. Mur, 1979. Growth kinetics of Oscillatoria agardhii Gomont in continuous culture, limited in its growth by the light energy supply. J. gen. Microbiol. 115: 153–160.

    Google Scholar 

  • Lund, J.W.G., 1962. The periodicity of Melosira islandica O. Müll in Great Slave Lake. J. Fish. Res. Bd Can. 19: 501–504.

    Google Scholar 

  • Mann, K.H. & J.R.N. Lazier, 1991. Dynamics of marine ecosystems: biological — physical interactions in the ocean. Blackwell Scientific Publications, Boston, 466 pp.

    Google Scholar 

  • Margalef, R., 1960. Ideas for a synthetic approach to the ecology of running waters. Int. Revue ges. Hydrobiol. 45: 133–153.

    Google Scholar 

  • Milliman, J.D., 1990. Fluvial sediments in coastal seas: flux and fate. Nature & Resources 26 (4): 12–22.

    Google Scholar 

  • Moss, B. & H. Balls, 1989. Phytoplankton distribution in a floodplain lake and river system. II. Seasonal changes in the phytoplankton communities and their control by hydrology and nutrient availability. J. Plankton Res. 11: 836–867.

    Google Scholar 

  • Munawar, M. & I.F. Munawar, 1982. Phycological studies in Lakes Ontario, Erie, Huron and Superior. Can. J. Bot. 60: 1837–1858.

    Google Scholar 

  • Munk, W.H. & G.A. Riley, 1952. Absorption of nutrients by aquatic plants. J. mar. Res. 11: 215–240.

    Google Scholar 

  • Neale, P.J., 1987. Algal photoinhibition and photosynthesis in the aquatic environment. In E. Kyle, C.J. Arntzen & B. Osmond (eds), Photoinhibition. Elsevier, Amsterdam: 39–65.

    Google Scholar 

  • Neale, P.J., S.I. Heaney & G.H.M. Jaworski, 1991. Responses to high irradiance contribute to the decline of the spring diatom maximum. Limnol. Oceanogr. 36: 761–768.

    Google Scholar 

  • Oakey, N.S. & J.A. Elliot, 1982. Dissipation within the surface mixed layer. J. phys. Oceanogr. 12: 171–185.

    Google Scholar 

  • Pasciak, W.I. & J. Gavis, 1974. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19: 881–888.

    Google Scholar 

  • Reynolds, C.S., 1983. A physiological interpretation of the dynamics responses of populations of a planktonic diatom to physical variability of the environment. New Phytol. 95: 41–53.

    Google Scholar 

  • Reynolds, C.S., 1984a. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Reynolds, C.S., 1984b. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Google Scholar 

  • Reynolds, C.S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In C.D. Sandgren (ed), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York: 388–433.

    Google Scholar 

  • Reynolds, C.S., 1989. Physical determinants of phytoplankton succession. In U. Sommer (ed.), Plankton ecology. Springer Verlag, New York: 9–56.

    Google Scholar 

  • Reynolds, C.S., 1992a. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Ergebn. Limnol. 35: 13–31.

    Google Scholar 

  • Reynolds, C.S., 1992b. Algae. In P. Calow, & G.E. Petts (eds), The rivers handbook. Volume I. Blackwell Scientific Publications, Oxford: 195–217.

    Google Scholar 

  • Reynolds, C.S., 1993a. Swings and roundabouts: engineering the environment of algal growth. In K.N. White, E.G. Bellinger, A.J. Saul, M. Symes & K. Hendry (eds), Urban waterside regeneration: problems and prospects. Ellis Horwood, Chichester: 330–349.

    Google Scholar 

  • Reynolds, C.S., 1993b. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Google Scholar 

  • Reynolds, C.S. 1994a. The role of fluid motion in the dynamics of phytoplankton in lakes and rivers. In: P.S. Giller, A.G. Hilldrew & D. Raffaelli (eds), Ecology of aquatic organisms: scale, pattern, process. Blackwell Scientific Publications, Oxford: 141–187.

    Google Scholar 

  • Reynolds, C.S., 1994b. Paradigms regained — potamoplankters do it on the side. In A.J.D. Ferguson & D. Harper (eds), The ecological basis for river management. Wiley-Interscience, London.

    Google Scholar 

  • Reynolds, C.S., P.A. Carling & K.J. Beven, 1991. Flow in river channels: new insights into hydraulic retention. Arch. Hydrobiol. 121: 171–179.

    Google Scholar 

  • Reynolds, C.S. & M.S. Glaister, 1993. Spatial and temporal changes in phytoplankton abundance in the upper and middle reaches of the River Severn. Large Rivers 1.

  • Reynolds, C.S., M.L. White, R.T. Clarke & A.F.H. Marker, 1990. Suspension and settlement of particles in flowing water: comparison of the effects of varying water depth and velocity in circulating channels. Freshwat. Biol. 24: 23–34.

    Google Scholar 

  • Reynolds, C.S. & S.W. Wiseman, 1982. Sinking losses of phytoplankton in closed limnetic systems. J. Plankton Res. 4: 489–522.

    Google Scholar 

  • Reynolds, C.S., H. Morison & C. Butterwick, 1982. The sedimentary flux of phytoplankton in the south basin of Windermere. Limnol. Oceanogr. 27: 1162–1175.

    Google Scholar 

  • Rossolimo, L.L., 1957. Temperature regime of Lake Baikal (In Russian). Trudy Baikal'skoi limnologicheskoi Stantsii 16: 1–551.

    Google Scholar 

  • Sabater, S. & I. Muñoz, 1990. Successional dynamics of the phytoplankton in the lower part of the River Ebro. J. Plankton Res. 12: 573–592.

    Google Scholar 

  • Skabichevskii, A.P., 1960. Planktonic diatom algae of freshwater of the USSR: systematics, ecology and distribution (In Russian). Izdatel'stvo, Moskovsogo Universiteta, Moskva, 351 pp.

    Google Scholar 

  • Smith, I.R., 1992. Hydroclimate: the influence of water movement on freshwater ecology. Elsevier, London, 304 pp.

    Google Scholar 

  • Spigel, R.H. & J. Imberger, 1987. Mixing processes relevant to phytoplankton dynamics in lakes. New Zealand J. mar. freshwat. Res. 21: 361–377.

    Google Scholar 

  • Swale, E.M.F., 1969. Phytoplankton in two English rivers. J. Ecol. 57: 1–23.

    Google Scholar 

  • Talling, J.F., 1966. The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Int. Revue ges. Hydrobiol. 51: 545–621.

    Google Scholar 

  • Tandeau de Marsac, N.T., 1977. Occurrence and nature of chromatic adaptations in cyanobacteria. J. Bact. 130: 82–91.

    Google Scholar 

  • Tennekes, H. & J.L. Lumley, 1972. A first course in turbulence. M.I.T. Press, Cambridge (Mass.), 300 pp.

    Google Scholar 

  • Welch, P.S., 1952. Limnology (2nd Edition). McGraw-Hill, New York, 538 pp.

    Google Scholar 

  • Wawrik, F., 1962. Zur Frage: Führt der Donaustrom autochtones Plankton? Arch. Hydrobiol. (Suppl.) 27: 28–35.

    Google Scholar 

  • Whitton, B.A., 1966. Algae in St James Park Lake. London Naturalist 45: 26–28.

    Google Scholar 

  • Williams, L.G., 1972. Plankton diatom species biomass and the quality of American rivers and the Great Lakes. Ecology 53: 1038–1050.

    Google Scholar 

  • Young, P.C. & S.G. Wallis, 1987. The aggregated dead-zone model for dispersion. In BHRA, Proceedings of the conference on water-quality modelling in the inland natural environment. BHRA, Cranfield: 421–433.

    Google Scholar 

  • Zacharias, O., 1898. Das Potamoplankton. Zool. Anz. 21: 41–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C.S. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289, 9–21 (1994). https://doi.org/10.1007/BF00007405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007405

Key words

Navigation