Skip to main content
Log in

Instationary compaction wave propagation in highly porous cohesive granular media

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We study the collision of a highly porous granular aggregate of adhesive \(\upmu \)m-sized silica grains with a hard wall using a granular discrete element method. A compaction wave runs through the granular sample building up an inhomogeneous density profile. The compaction is independent of the length of the aggregate, within the regime of lengths studied here. Also short pulses, as they might be exerted by a piston pushing the granular material, excite a compaction wave that runs through the entire material. The speed of the compaction wave is larger than the impact velocity but considerably smaller than the sound speed. The wave speed is related to the compaction rate at the colliding surface and the average slope of the linear density profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bourne N (2013) Materials in mechanical extremes. Cambridge University Press, New York

    Book  Google Scholar 

  2. Lopatnikov SL, Gama BA, Jahirul Haque M, Krauthauser C, Gillespie Jr JW, Guden M, Hall IW (2003) Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos Struct 61:61–71

    Article  Google Scholar 

  3. Ringl C, Gunkelmann N, Bringa EM (2015) Compaction of highly porous granular matter by impacts on a hard wall. Phys Rev E 91:042205. doi:10.1103/PhysRevE.91.042205

    Article  Google Scholar 

  4. Grün E (2007) Solar system dust. In: McFadden LA, Weissman PR, Johnson TV (eds) Encyclopedia of the solar system, 2nd edn. Academic, New York, p 621

  5. Jutzi M, Benz W, Michel P (2008) Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3D SPH hydrocode. Icarus 198:242–255

    Article  Google Scholar 

  6. Duran J (2000) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New York

    Book  Google Scholar 

  7. Mishra BK, Thornton C (2001) Impact breakage of particle agglomerates. Int J Miner Process 61:225–239

    Article  Google Scholar 

  8. Reynolds GK, Fu JS, Cheong YS, Hounslow MJ, Salman AD (2005) Breakage in granulation: a review. Chem Eng Sci 60:3969–3992

    Article  Google Scholar 

  9. Pöschel T, Schwager T (2005) Computational granular dynamics: models and algorithms. Springer, Berlin

    Google Scholar 

  10. Carmona HA, Wittel FK, Kun F, Herrmann HJ (2008) Fragmentation processes in impact of spheres. Phys Rev E 77:051302. doi:10.1103/PhysRevE.77.051302

    Article  MATH  Google Scholar 

  11. Tong ZB, Yang RY, Yu AB, Adi S, Chan HK (2009) Numerical modelling of the breakage of loose agglomerates of fine particles. Powder Technol 196:213–221

    Article  Google Scholar 

  12. Hein K, Hucke T, Stintz M, Ripperger S (2002) Analysis of adhesion forces between particles and wall based on the vibration method. Part Part Syst Charact 19:269–276

    Article  Google Scholar 

  13. Weidling R, Güttler C, Blum J, Brauer F (2009) The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. Astrophys J 696:2036–2043

    Article  Google Scholar 

  14. Wittel FK (2010) Single particle fragmentation in ultrasound assisted impact comminution. Granul Matter 12:447–455

    Article  MATH  Google Scholar 

  15. Blum J, Schräpler R (2004) Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Phys Rev Lett 93:115503

    Article  Google Scholar 

  16. Blum J (2006) Dust agglomeration. Adv Phys 55:881–947

    Article  Google Scholar 

  17. Ringl C (2012) Granularmechanische Simulationen von Staubagglomeraten. PhD Thesis, University Kaiserslautern

  18. Ringl C, Urbassek HM (2012) A LAMMPS implementation of granular mechanics: inclusion of adhesive and microscopic friction forces. Comput Phys Commun 183:986–992

    Article  MathSciNet  MATH  Google Scholar 

  19. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Prog Comput Fluid Dyn 12:140–152

    Article  MathSciNet  Google Scholar 

  20. Dominik C, Tielens AGGM (1997) The physics of dust coagulation and the structure of dust aggregates in space. Astrophys J 480:647–673

    Article  Google Scholar 

  21. Wada K, Tanaka H, Suyama T, Kimura H, Yamamoto T (2007) Numerical simulation of dust aggregate collisions. I. Compression and disruption of two-dimensional aggregates. Astrophys J 661:320–333

    Article  Google Scholar 

  22. Brilliantov NV, Spahn F, Hertzsch JM, Pöschel T (1996) Model for collisions in granular gases. Phys Rev E 53:5382–5392. doi:10.1103/PhysRevE.53.5382

  23. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326

    Article  Google Scholar 

  24. Maugis D (2000) Contact, adhesion and rupture of elastic solids. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Burnham N, Kulik AA (1999) Chapter 5: surface forces and adhesion. In: Bhushan B (ed) Handbook of micro/nano tribology, 2nd edn. CRC Press, Boca Raton, pp 247–271

    Google Scholar 

  26. Chokshi A, Tielens AGGM, Hollenbach D (1993) Dust coagulation. Astrophys J 407:806–819

    Article  Google Scholar 

  27. Poppe T, Blum J, Henning T (2000) Analogous experiments on the stickiness of micron-sized preplanetary dust. Astrophys J 533:454–471

    Article  Google Scholar 

  28. Meisner T, Wurm G, Teiser J (2012) Experiments on centimeter-sized dust aggregates and their implications for planetesimal formation. Astron Astrophys 544:A138

    Article  Google Scholar 

  29. Wolf DE, Unger T, Kadau D, Brendel L (2005) Compaction of cohesive powders. In: Garcia-Rojo R, Herrmann HJ, McNamara S (eds) Powders and grains. Balkema, Leiden, pp 525–538

    Google Scholar 

Download references

Acknowledgments

Simulations were performed at the High Performance Cluster Elwetritsch (RHRK, TU Kaiserslautern, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert M. Urbassek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunkelmann, N., Ringl, C. & Urbassek, H.M. Instationary compaction wave propagation in highly porous cohesive granular media. Comp. Part. Mech. 3, 429–434 (2016). https://doi.org/10.1007/s40571-016-0110-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0110-y

Keywords

Navigation