Skip to main content

Advertisement

Log in

Physiological approaches for increasing nitrogen use efficiency in rice

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Nitrogen (N) plays an important role in plant growth, development and also one of the major factor for developing a high-yielding rice cultivars. Nitrogen use efficiency (NUE) in plants is a complex phenomenon that depends on a number of internal and external factors, which include soil N availability, its uptake and assimilation of carbon and nitrogen. An increased awareness of the regulatory mechanisms controlling Nitrogen economy is imperative to enhance nitrogen uptake and use efficiency so as to reduce excessive input of fertilizers, while maintaining an acceptable yield. The physiological, biochemical, molecular aspects like QTL, mi RNA technology and transgenic approaches as well as NUE can be targeted to improve rice productivity. Yield being complex and multigenic trait linkages between carbon and nitrogen pathways are essential. An attempt on complex interactions between the two major physiological pathways linked by photosynthesis and photorespiration in global climate change for enhancing NUE in relation to rice yield was reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrol, Y. P., Chatterjee, S. R., Kumar, P. A., & Jain, V. (1999). Improvement in nitrogen use efficiency: Physiological and molecular approaches. Current Science, 76, 1357–1364.

    Google Scholar 

  • Abrol, Y. P., Raghuram, N., & Sachdev, M. S. (Eds.). (2007). Agricultural nitrogen use and its environmental implications (p. 552). New Delhi: IK International.

    Google Scholar 

  • Aitken, A. (1999). Protein consensus sequence motifs. Molecular Biotechnology, 12, 241–253.

    PubMed  CAS  Google Scholar 

  • Ameziane, R., Bernhard, K., & Lightfoot, D. (2000). Expression of the bacterial gdhA gene encoding a NADPH-glutamate dehydrogenase in tobacco affects plant growth and development. Plant and Soil, 221, 47–57.

    CAS  Google Scholar 

  • Andrews, M., Lea, P. J., Raven, J. A., & Lindsey, K. (2004). Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N use efficiency? An assessment. Annals of Applied Biology, 45(1), 25–40.

    Google Scholar 

  • Ayling, S. M. (1993). The effect of ammonium ions on membrane potential and anion flux in roots of barley and tomato. Plant, Cell and Environment, 16, 297–303.

    CAS  Google Scholar 

  • Bachmann, M., McMichael, R. W, Jr, Huber, J. L., Kaiser, W. M., & Huber, S. C. (1995). Partial purification and characterization of a calcium-dependent protein kinase and an inhibitor protein required for inactivation of spinach leaf nitrate reductase. Plant Physiology, 108, 1083–1091.

    PubMed  CAS  Google Scholar 

  • Bi, Y. M., Kant, S., Clark, J., Gidda, S., Ming, F., Xu, J., et al. (2009). Increased nitrogen use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environment, 32, 1749–1760.

    CAS  Google Scholar 

  • Boussiba, S., & Gibson, J. (1991). Ammonia translocation in cyanobacteria. FEMS Mirobiology Letters, 88, 1–14.

    CAS  Google Scholar 

  • Brauer, E. K., Rochon, A., Bi, Y. M., Bozzo, G. G., Rothstein, S. J., & Shelp, B. (2011). Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase 1 Physiological. Plantarum, 141, 361–372.

    CAS  Google Scholar 

  • Brenner, M. L., & Cheikh, N. (1995). The role of hormones in photosynthate partitioning and seed filling. In P. J. Davies (Ed.), Plant hormones (pp. 649–670). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Britto, D. T., Siddiqi, M. Y., Glass, A. D. M., & Kronzucker, H. J. (2001). Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences of the United States of America, 98, 4255–4258.

    PubMed  CAS  Google Scholar 

  • Campbell, W. H. (1996). Nitrate reductase biochemistry comes of age. Plant Physiology, 111, 355–361.

    PubMed  CAS  Google Scholar 

  • Cassman, K. G., & Pingali, P. L. (1994). Extrapolating trends from long term experiments to farmers fields: the case of irrigated rice systems in Asia. In V. Barnett, R. Payne, & Roy Steiner (Eds.), Agricultural sustainability in economic, environmental and statistical considerations (pp. 63–84). New York: Wiley.

    Google Scholar 

  • Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet-Mercey, S., et al. (2009). The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal, 56, 45–87.

    Google Scholar 

  • Chapin, F. S, I. I. I. (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233–260.

    CAS  Google Scholar 

  • Chichkova, S., Arellano, J., Vance, C. P., & Hernandez, G. (2001). Transgenic tobacco plants that overexpress alfalfa NADHglutamate synthase have higher carbon and nitrogen content. Journal of Experimental Botany, 52, 2079–2087.

    PubMed  CAS  Google Scholar 

  • Choudhury, A. T. M. A., & Kennedy, I. R. (2005). Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Communications in Soil Science and Plant Analysis, 36, 1625–1639.

    CAS  Google Scholar 

  • Clarkson, D. T. (1985). Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology, 36, 77–115.

    CAS  Google Scholar 

  • Cock, J. M., Mould, R. M., Bennett, M. J., & Cullimore, J. V. (1990). Expression of glutamine synthetase genes in roots and nodules of Phaseolus vulgaris following changes in the ammonium supply and infection with various Rhizobium mutants. Plant Molecular Biology, 14, 549–560.

    PubMed  CAS  Google Scholar 

  • Crawford, N. M. (1995). Nitrate: Nutrient and signal for plant growth. The Plant Cell, 7, 859–868.

    PubMed  CAS  Google Scholar 

  • Crawford, N. M., & Forde, B. G. (2002). Molecular and developmental biology of inorganic nitrogen nutrition. In E. Meyerowitz & C. Somerville (Eds.), The arabidopsis book. Rockville, MD: American Society of Plant Biologists. doi:10.1199/tab.0011.

    Google Scholar 

  • Crawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Science, 3, 389–395.

    Google Scholar 

  • Dalling, M. J. (1985). The physiological basis of nitrogen redistribution during filling in cereals (pp. 55–71). Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  • Das, A. K., Cohen, P. W., & Barford, D. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein–protein interactions. The EMBO Journal, 17, 1192–1199.

    PubMed  CAS  Google Scholar 

  • Davies, P. J. (1987). The plant hormones: Their nature, occurrence, and functions. In P. J. Davies (Ed.), Plant hormones and their role in plant growth and development (pp. 1–11). Dordrecht: Martinus Nijhoff Publishers.

    Google Scholar 

  • De Datta, S. K. (1986). Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Research, 9, 171–186.

    Google Scholar 

  • Edwards, J. W., Walker, E. L., & Coruzzi, G. M. (1990). Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proceedings of the National Academy of Sciences of the United States of America, 87, 3459–3463.

    PubMed  CAS  Google Scholar 

  • Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9–19.

    Google Scholar 

  • FAOSTAT 2010. FAO statistical databases. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org.

  • Feng, K., Wang, X. L., & Chen, P. (2003). Nitrate uptake of rice and the effect of ammonium on it at different growth stages. Agricultural Science in China, 36(3), 307–312. (in Chinese).

    CAS  Google Scholar 

  • Forde, B. G. (2000). Nitrate transporters in plants: structure, function and regulation. Biochimica et Biophysica Acta (BBA). Biomembranes, 1465, 219–235.

    CAS  Google Scholar 

  • Forde, B. G., Day, H. M., Turton, J. F., Shen, W. J., Cullimore, J. V., & Oliver, J. E. (1989). Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell, 1, 391–401.

    PubMed  CAS  Google Scholar 

  • Forde, B. G., & Lea, P. J. (2007). Glutamate in plants: Metabolism, regulation and signalling. Journal of Experimental Botany, 58, 2339–2358.

    PubMed  CAS  Google Scholar 

  • Fuentes, S. I., Alen, D. J., Ortiz-Lopez, A., & Hernandez, G. (2001). Overexpression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany, 52, 1071–1081.

    PubMed  CAS  Google Scholar 

  • Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E., & Conti, E. (2005). SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Molecular Cell, 17, 537–547.

    PubMed  CAS  Google Scholar 

  • Fukumorita, T., & Chino, M. (1982). Sugar amino acid and inorganic contents in rive phloem sap. Plant Cell Physiology, 23, 273–283.

    CAS  Google Scholar 

  • Gallais, A. (2005). Genetic variation and selection for nitrogen use efficiency in maize: A synthesis. Mycedia., 50, 531–547.

    Google Scholar 

  • Gallais, A., & Hirel, B. (2004). An approach to the genetics of nitrogen use efficiency in maize. Journal of Experimental Botany, 55, 295–306.

    PubMed  CAS  Google Scholar 

  • Garnett, T., Conn, V., & Kaiser, B. N. (2009). Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell and Environment, 32, 1272–1283.

    PubMed  CAS  Google Scholar 

  • Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M., & Birnbaum, K. D. (2008). Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National Academy of Sciences of the United States of America, 105, 803–808.

    PubMed  CAS  Google Scholar 

  • Glass, A. D. M. (2003). Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, 22, 453–470.

    CAS  Google Scholar 

  • Glass, A. D. M., Brito, D. T., Kaiser, B. N., Kronzucker, H. J., Kumar, A., Okamoto, M., et al. (2001). Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. Journal of Plant Nutrition and Soil Science, 164, 199–207.

    CAS  Google Scholar 

  • Glass, A. D. M., Britto, D. T., Kaiser, B. N., Kinghorn, J. R., Kronzucker, H. J., Kumar, A., et al. (2002). The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany, 53, 855–864.

    PubMed  CAS  Google Scholar 

  • Good, A. G., Johnson, S. J., & DePauw, M. D. (2007). Engineering nitrogen use efficiency with alanine amino transferease. Canadian Journal of Botany, 85, 52–262.

    Google Scholar 

  • Good, A. G., Shrawat, A. K., & Muench, D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 9, 597–605.

    PubMed  CAS  Google Scholar 

  • Guiz, C., Hirel, B., Shedlofsky, G., & Gadal, P. (1979). Occurrence and influence of light on the relative proportions of two glutamine synthetase in rice leaves. Plant Science Letter, 15, 271–277.

    Google Scholar 

  • Gutiérrez, R. A., Stokes, T. L., Thum, K., Xu, X., Obertello, M., Katari, M. S., et al. (2008). Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proceedings of the National Academy of Sciences of the United States of America, 105, 4939–4944.

    PubMed  Google Scholar 

  • Harrison, J., Brugière, N., Phillipson, B., Ferrario-Mery, S., Becker, T., Limami, A., et al. (2000). Manipulating the pathway of ammonia assimilation through genetic engineering and breeding: Consequences to plant physiology and plant development. Plant and Soil, 221, 81–93.

    CAS  Google Scholar 

  • Hayakawa, T., Yamaka, M., Mae, T., & Ojima, K. (1993). Changes in the content of two glutamate synthase protein in spikelet’s of rice plants during repining. Plant Physiology, 101, 1257–1262.

    PubMed  CAS  Google Scholar 

  • Hirel, B., Bouet, C., King, B., Layzell, B., Jacobs, F., & Verma, D. P. S. (1987). Glutamine synthetase genes are regulated by ammonia provided externally or by symbiotic nitrogen fixation. The EMBO Journal, 6, 1167–1171.

    PubMed  CAS  Google Scholar 

  • Hirel, B., Le Gouis, J., Ney, B., & Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58, 2369–2387.

    Google Scholar 

  • Hirel, B., & Lemaire, G. (2005). From agronomy and ecophysiology to molecular genetics for improving nitrogen use efficiency in crops. Journal of Crop Improvement, 15, 369.

    Google Scholar 

  • Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., & Tanaka, A. (2000). Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology, 43, 103–111.

    PubMed  CAS  Google Scholar 

  • Hu, H. C., Wang, Y. Y., & Tsay, Y. F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal, 57, 264–278.

    PubMed  CAS  Google Scholar 

  • Huber, S. C., & Huber, J. L. (1996). Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 431–444.

    PubMed  CAS  Google Scholar 

  • Huggins, D. R., & Pan, W. L. (2003). Key indicators for assessing nitrogen use efficiency in cereal-based agro ecosystems. Journal of Crop Production, 8, 157–185.

    CAS  Google Scholar 

  • Inthapanya, P., Sipaseuth, P., Sihavong, V., Sihathep, M., Chanphengsay, S., Fukai, J., et al. (2000). Genotypic performance under fertilised and non-fertilised conditions in rainfed lowland rice. Field Crops Research, 65, 1–14.

    Google Scholar 

  • Ishimaru, K., Kobayashi, N., Ono, K., Yano, M., & Ohsugi, R. (2001). Are contents Of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? Journal of Experimental Botany, 52, 1827–1833.

    PubMed  CAS  Google Scholar 

  • Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T., & Takahashi, H. (2004). Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. Journal of Biological Chemistry, 279, 16598–16605.

    PubMed  CAS  Google Scholar 

  • Jing, Z. P., Gallardo, F., Pascual, M. B., Sampalo, R., Romero, J., de Torres Vavarra, A., et al. (2004). Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytology, 164, 137–145.

    CAS  Google Scholar 

  • Kendall, A. C., Keys, A. J., Turner, J. C., Lea, P. J., & Mi£in, B. J. (1983). The isolation and characterisation of a catalasede¢ cient mutant of barley (Hordeum vulgare L.). Planta, 159, 505–511.

    CAS  Google Scholar 

  • Keys, A. J., Bird, I. F., Cornelius, M. J., Lea, P. J., Wallsgrove, R. M., & Mi£in, B. J. (1978). Photorespiratory nitrogen cycle. Nature, 275, 741–743.

    Google Scholar 

  • Kingston-Smith, A. H., Bollard, A. L., & Minchin, F. R. (2006). The effect of nitrogen status on the regulation of plant mediated proteolysis in ingested forage: An assessment using non-nodulating white clover. Annals of Applied Biology, 149, 35–42.

    CAS  Google Scholar 

  • Kirk, G. J. D., & Kronzucker, H. J. K. (2005). The potential for nitrification and nitrate uptake in the rhizospere of wetland plants Modelling study. Annals of Botany, 96, 639–646.

    PubMed  CAS  Google Scholar 

  • Kiyomiya, S., Nakanishi, H., Uchida, H., Tsuji, A., Nishiyama, S., Futatsubashi, M., et al. (2001). Real time visualization of 13N-translocation in rice under different environment conditions using position emitting tracer imaging system. Plant Physiology, 125, 1743–1754.

    PubMed  CAS  Google Scholar 

  • Kleiner, D. (1981). The transport of NH3 and NH4 + across biological membranes. Biochimica et Biophysica Acta, 639, 41–52.

    PubMed  CAS  Google Scholar 

  • Kleiner, D. (1985). Bacterial ammonium transport. FEMS Microbiology Letters, 32, 87–100.

    CAS  Google Scholar 

  • Kozaki, A., & Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. Nature, 384, 557–560.

    CAS  Google Scholar 

  • Kronzucker, H. J., Siddiqi, M. Y., Glass, A. D. M., & Kirk, G. J. D. (1999). Nitrate ammonium synergism in rice: A subcellular analysis. Plant Physiology, 119, 1041–1046.

    PubMed  CAS  Google Scholar 

  • Kumar, A., Silim, S. N., Okamoto, M., Siddiqi, M. Y., & Glass, A. D. M. (2003). Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4 + transporters in roots of Oryza sativa subspecies indica. Plant, Cell and Environment, 26, 907–914.

    PubMed  CAS  Google Scholar 

  • Ladha, J. K., Kirk, G. J. D., Bennelt, J., Peng, S., Reddy, C. K., Reddy, P. M., et al. (1998). Opportunities for increased Nitrogen use efficiency from improved low land rice germplasm. Field crop research, 56, 41–51.

    Google Scholar 

  • Laza, M. R., Kondo, M., Ideta, O., Barlaan, E., & Imbe, T. (2006). Identification of quantitative trait loci for δ13C and productivity in irrigated lowland rice. Crop Science, 46, 763–773.

    Google Scholar 

  • Lea, P. J., & Azevedo, R. A. (2007). Nitrogen use efficiency. 2 amino acid metabolism. Annals of Applied Biology, 151, 269–275.

    CAS  Google Scholar 

  • Lillo, C. (1994). Light/dark regulation of higher plant nitrate reductase related to hysteresis and calcium/magnesium inhibition. Physiologia Plantarum, 91, 295–299.

    CAS  Google Scholar 

  • Lima, L., Seabra, A., Melo, P., Cullimore, J., & Carvalho, H. (2006). Posttranslational regulation of cytosolic glutamine synthetase of Medicago truncatula. Journal of Experimental Botany, 57, 2751–2761.

    PubMed  CAS  Google Scholar 

  • Little, D. Y., Rao, H., Oliva, S., Daniel-Vedele, F., Krapp, A., & Malamy, J. E. (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America, 102, 13693–13698.

    PubMed  CAS  Google Scholar 

  • Loqué, D., & von Wirén, N. (2004). Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany, 55, 1293–1305.

    PubMed  Google Scholar 

  • MacKintosh, C. (1992). Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochimica et Biophysica Acta (BBA), 1137, 121–126.

    CAS  Google Scholar 

  • Mae, T. (1997). Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant and Soil, 78, 51–60.

    Google Scholar 

  • Mae, T., & Ohira, K. (1981). The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant and Cell Physiology, 22, 1067–1074.

    CAS  Google Scholar 

  • Maheswari, M. (1986). Investigation on ammonia metabolism in relation to nitrogen loss on cereal. PhD Thesis. New Delhi: Indian Agriculture Research Institute.

  • Makino, A., Mae, T., & Ohira, K. (1988). Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta, 174, 30–38.

    CAS  Google Scholar 

  • Martin, A., Lee, J., & Kichey, T. (2006). Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, 18, 3252–3274.

    PubMed  CAS  Google Scholar 

  • Masclaux, C., Quilleré, I., Gallais, A., & Hirel, B. (2001). The challenge of remobilization in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Annals of Applied Biology, 138, 69–81.

    CAS  Google Scholar 

  • McMichael, R. W., Klein, R. R., Salvucci, M. E., & Huber, S. C. (1993). Identification of the major regulatory phosphorylation site in sucrose-phosphate synthase. Archives of Biochemistry and Biophysics, 307, 248–252.

    PubMed  CAS  Google Scholar 

  • Mengel, K., Hutsch, B., & Kane, Y. (2006). Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. European Journal of Agronomy, 24, 343–348.

    Google Scholar 

  • Miao, G. H., Hirel, B., Marsolier, M. C., Ridge, R. W., & Verma, D. P. (1991). Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell, 3, 11–22.

    PubMed  CAS  Google Scholar 

  • Mickelson, S., See, D., Meyer, F. D., Garner, J. P., Foster, C. R., Blake, T. K., et al. (2003). Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. Journal of Experimental Botany, 54, 801–812.

    PubMed  CAS  Google Scholar 

  • Morot-Gaudry, J. F., Job, D., & Lea, P. J. (2001). Amino acid metabolism. In P. J. Lea & J. F. Morot-Gaudry (Eds.), Plant nitrogen (pp. 167–212). Berlin: Springer-Verlag.

    Google Scholar 

  • Mosse, J. (1990). Nitrogen to protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. Journal of Agricultural and Food Chemistry, 38, 18–24.

    CAS  Google Scholar 

  • Noctor, G., Arisi, A.-C. M., Jouanin, L., & Foyer, C. H. (1999). Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. Journal of Experimental Botany, 50, 1157–1167.

    CAS  Google Scholar 

  • Noctor, G., Arisi, A.-C. M., Jouanin, L., Kunert, K. J., Rennenberg, H., & Foyer, C. H. (1998). Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49(321), 623–647.

    CAS  Google Scholar 

  • Noctor, G., Arisi, A.-C. M., Jouanin, L., Valadier, M.-H., Roux, Y., & Foyer, C. H. (1997). Light-dependent modulation of foliar glutathione synthesis and associated amino acid metabolism in poplar overexpressing g-glutamylcysteine synthetase. Planta, 202, 357–369.

    CAS  Google Scholar 

  • Nogueira, E. D., Olivares, F. L., Japiassu, J. C., Vilar, C., Vinagre, F., Baldani, J. I., et al. (2005). Characterization of glutamine synthetase genes in sugarcane genotypes with different rates of biological nitrogen fixation. Plant Science, 169, 819–832.

    Google Scholar 

  • Obara, M., Kajiura, M., Fukuta, Y., Yano, M., Hayashi, M., Yamaya, T., et al. (2001). Mapping of QTLs associated with cytosolic glutamine synthetase and NADHglutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany, 52, 1209–1217.

    PubMed  CAS  Google Scholar 

  • Obara, M., Sato, T., Sasaki, S., Kashiba, K., Nagano, A., Nakamura, I., et al. (2004). Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theoretical Applied Genetics, 110, 1–11.

    PubMed  CAS  Google Scholar 

  • Oliveira, I. C., Brears, T., Knight, T. J., Clark, A., & Coruzzi, G. M. (2002). Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiology, 129, 1170–1180.

    PubMed  CAS  Google Scholar 

  • Orsel, M., Krapp, A., & Daniel-Vedele, F. (2002). Analysis of the NRT2 nitrate transporter family in Arabidopsis structure and gene expression. Plant Physiology, 129, 886–896.

    PubMed  CAS  Google Scholar 

  • Palenchar, P. M., Kouranov, A., Lejay, L. V., & Coruzzi, G. M. (2004). Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signalling hypothesis in plants. Genome Biology, 5(11), R91.

    PubMed  Google Scholar 

  • Pathak, R. R., Ahmad, A., Lochab, S., & Raghuram, N. (2008). Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Current Science, 94, 1394–1403.

    CAS  Google Scholar 

  • Peng, S., Garcia, F. V., Laza, R. C., Sanico, A. L., Visperas, R. M., & Cassman, K. G. (1996). Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Research, 47, 243–252.

    Google Scholar 

  • Peng, S. B., Huang, J. L., Zhong, X. H., Yang, J. C., Wang, G. H., Zou, Y. B., et al. (2002). Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scienta Agricola Sinica, 35(9), 1095–1103.

    Google Scholar 

  • Price, J., Laxmi, A., St Martin, S. K., & Jang, J. C. (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 16, 2128–2150.

    PubMed  CAS  Google Scholar 

  • Raghuram, N., Pathak, R. R., & Sharma, P. (2006). Signalling and the molecular aspects of N-use efficiency in higher plants. In R. P. Singh & P. K. Jaiwal (Eds.), Biotechnological approaches to improve nitrogen use efficiency in plants (pp. 19–40). Houston, TX: Studium Press LLC.

    Google Scholar 

  • Raun, W. R., & Johnson, G. V. (1999). Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91, 357–363.

    Google Scholar 

  • Sage, R. F., Pearcy, R. W., & Seeman, J. R. (1987). The nitrogen use efficiency in C3 and C4 plants. Plant Physiology, 85, 355–359.

    PubMed  CAS  Google Scholar 

  • Sahu, R. K., Tirol-Padre, A., Ladha, J. K., Singh, U., Baghel, S. S., & Shrivastava, M. N. (1997). Screening genotypes for nitrogen use efficiency on a nitrogen deficient soil. Oryza, 34, 350–357.

    Google Scholar 

  • Sakakibara, H., Shimizu, H., Hase, T., Yamazaki, Y., Takao, T., Shimonishi, Y., et al. (1996). Molecular identification and characterization of cytosolic isoforms of glutamine synthetase in maize roots. The Journal of Biological Chemistry, 271, 29561–29568.

    PubMed  CAS  Google Scholar 

  • Sakakibara, H., Suzuki, M., Takei, K., Deji, A., Taniguchi, M., & Sugiyama, T. (1998). A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. The Plant Journal, 14, 337–344.

    PubMed  CAS  Google Scholar 

  • Samuelson, M. E., Öhlén, E., Lind, M., & Larsson, C. M. (1995). Nitrate regulation of nitrate uptake and nitrate reductase expression in barley grown at different nitrate: Ammonium ratios at constant relative nitrogen addition rate. Physiologia Plantarum, 94, 254–260.

    CAS  Google Scholar 

  • Santi, S., Locci, G., Pinton, R., Cesco, S., & Varanini, Z. (1995). Plasma membrane H+-ATPase in maize roots induced for NO3 uptake. Plant Physiology, 109, 1277–1283.

    PubMed  CAS  Google Scholar 

  • Scheible, W.-R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., et al. (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 136, 2483–2499.

    PubMed  CAS  Google Scholar 

  • Shrawat, A. K., Carroll, R. T., DePauw, M., Taylor, G. J., & Good, A. G. (2008). Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnology Journal, 6, 722–732.

    PubMed  CAS  Google Scholar 

  • Sinclair, T. R., & Purcell, L. C. (2005). Is a physiological perspective relevant in a ‘genocentric age?’. Journal of Experimental Botany, 56, 2777–2782.

    PubMed  CAS  Google Scholar 

  • Smil, V. (1997). Global population and nitrogen cycle. Scientific American Magazine, 277, 76–81.

    CAS  Google Scholar 

  • Smith, F. A., & Walker, N. A. (1978). Entry of methylammonium and ammonium ions into Chara internodal cells. Journal of Experimental Botany, 29, 107–120.

    CAS  Google Scholar 

  • Somerville, C. R., & Ogren, W. L. (1981). Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity. Plant Physiology, 67, 666–671.

    PubMed  CAS  Google Scholar 

  • Soni, R., Carmichael, J. P., Shah, Z. H., & Murray, J. A. H. (1995). A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. The Plant Cell, 7, 85–103.

    PubMed  CAS  Google Scholar 

  • Sonoda, Y., Ikeda, A., Saiki, S., von Wién, N., Yamaya, T., & Yamaguchi, J. (2003a). Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiology, 44, 726–734.

    PubMed  CAS  Google Scholar 

  • Sonoda, Y., Ikeda, A., Saiki, S., Yamaya, T., & Yamaguchi, J. (2003b). Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiology, 44, 1396–1402.

    PubMed  CAS  Google Scholar 

  • Sprent, J. I., & Sprent, P. (1990). Nitrogen fixing organisms—pure and applied aspects (p. 256). London: Chapman and Hall.

    Google Scholar 

  • Su, W., Huber, S. C., & Crawford, N. M. (1996). Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. The Plant Cell, 8, 519–527.

    PubMed  CAS  Google Scholar 

  • Subbarao, G. V., Ito, O., Sahrawat, K. L., Berry, W. L., Nakahara, K., Ishikawa, T., et al. (2006). Scope and strategies for regulation of nitrification in agricultural systems. Critical Reviews in Plant Science, 25, 303–335.

    CAS  Google Scholar 

  • Sugiyama, T., & Sakakibara, H. (2002). Regulation of carbon and nitrogen assimilation through gene expression. In C. H. Foyer & G. Noctor (Eds.), Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism (pp. 227–238). Dordrecht: Kluwer.

    Google Scholar 

  • Suzuki, A., Gadal, P., & Oaks, A. (1981). Intracellular distribution of enzymes associated with nitrogen assimilation in roots. Planta, 151, 457–561.

    Google Scholar 

  • Ta, T. C., & Ohira, K. (1981). Effects of various environmental and medium conditions on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Science and Plant Nutrition, 27, 347–355.

    CAS  Google Scholar 

  • Tabuchi, M., Abiko, T., & Yamaya, T. (2007). Assimilation of ammonium ions and reutilization of nitrogen in rice (O. sativa L.). Journal of Experimental Botany, 58, 2319–2327.

    PubMed  CAS  Google Scholar 

  • Tabuchi, M., Sugiyama, K., Ishiyama, K., Inoue, E., Sato, T., Takahashi, H., et al. (2005). Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant Journal, 42, 641–651.

    PubMed  CAS  Google Scholar 

  • Tatsumi, J. (1982). Growth of crops and transport of nitrogen (3). Agriculture & Horticulture, 57, 631–638.

    Google Scholar 

  • Terce-Laforgue, T., Carrayol, E., Cren, M., Desbrosses, G., Hecht, V., & Hirel, B. (1999). A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase. Plant Molecular Biology, 36, 551–564.

    Google Scholar 

  • Tobin, A. K., & Yamaya, T. (2001). Cellular compartmentation of ammonium assimilation in rice and barley. Journal of Experimental Botany, 52, 591–604.

    PubMed  CAS  Google Scholar 

  • Toroser, D., Athwal, G. S., & Huber, S. C. (1998). Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 protein. FEBS Letters, 435, 110–114.

    PubMed  CAS  Google Scholar 

  • Toroser, D., & Huber, S. C. (1997). Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves. Plant Physiology, 114, 947–955.

    PubMed  CAS  Google Scholar 

  • Townsend, A. R., & Palm, C. A. (2009). Nitrogen challenge. BioScience, 59, 822–823.

    Google Scholar 

  • Ullrich, W. R. (1992). Transport of nitrate and ammonium through plant membranes. In K. Mengel & D. J. Pilbeam (Eds.), Nitrogen metabolism of plants (pp. 121–137). Oxford: Clarendon Press.

    Google Scholar 

  • Vinod, K. K. (2007). Detection of quantitative trait loci (QTL) associated with agronomic traits under two regimes of nitrogen and grain quality parameters in rice (Oryza sativa L.). PhD Thesis. Coimbatore: Tamil Nadu Agricultural University.

  • Wang, R., & Crawford, N. M. (1996). Genetic identification of a genes involved in constructive, high affinity transport in higher plant. Proceedings of the National Academy of Sciences of the United States of America, 93, 9297–9301.

    PubMed  CAS  Google Scholar 

  • Wang, R., Guegler, K., Labrie, S. T., & Crawford, N. M. (2000). Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell, 12, 1491–1509.

    PubMed  CAS  Google Scholar 

  • Wang, R., Okamoto, M., Xing, X., & Crawford, N. M. (2003). Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose)6-phosphate, iron, and sulfate metabolism. Plant Physiology, 132, 556–567.

    PubMed  CAS  Google Scholar 

  • Wang, R., Tischner, R., Gutierrez, R. A., Hoffman, M., Xing, X., Chen, M., et al. (2004). Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiology, 136, 2512–2522.

    PubMed  CAS  Google Scholar 

  • Xiao, B., Smerdon, S. J., Jones, D. H., Dodson, G. G., Soneji, Y., Aitken, A., et al. (2002). Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature, 376, 188–191.

    Google Scholar 

  • Yamaya, T., Obara, M., Nakajima, H., Sasaki, S., Hayakawa, T., & Sato, T. (2002). Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany, 53, 917–925.

    PubMed  CAS  Google Scholar 

  • Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceeding of National Academy Science USA, 101, 7833–7838.

    CAS  Google Scholar 

  • Yang, W. Y., Xiang, Z. F., Ren, W. J., & Wang, X. C. (2005). Effect of S-3307 on nitrogen metabolism and grain protein content in rice. Chinese Journal of Rice Science, 19(1), 63–67.

    CAS  Google Scholar 

  • Zhuo, D. G., Okamoto, M., Vidmar, J. J., & Glass, A. D. M. (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. The Plant Journal, 17, 563–568.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Project Director Dr. B.C. Viraktamath and the financial support from NICRA, ICAR, Ministry of Agriculture, Government of India. Vide grant number (F. No. Phy/NICRA/2011-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Voleti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayalakshmi, P., Kiran, T.V., Rao, Y.V. et al. Physiological approaches for increasing nitrogen use efficiency in rice. Ind J Plant Physiol. 18, 208–222 (2013). https://doi.org/10.1007/s40502-013-0042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-013-0042-y

Keywords

Navigation