Skip to main content
Log in

Inference for performance measures for financial assets

  • Published:
METRON Aims and scope Submit manuscript

Abstract

In this work the precision of point and interval estimators for some performance measures for risky financial assets is analyzed and the conditions under which the point estimators are asymptotically normally distributed are provided. The findings of this research suggest that a huge number of observations is needed to get reasonably precise point and interval estimates. Therefore, the considered performance measures may be surely employed as descriptive statistics for ex-post performance comparisons but they should be employed with caution in ex-ante evaluations for investment choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexander, G.J., Baptista, A.M.: Portfolio evaluation using value at risk. J. Portf. Manag. 29(4), 93–102 (2003)

    Article  Google Scholar 

  2. Andrews, D.W.K.: Heteroscedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817–858 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S.: Different approaches to risk estimation in portfolio theory. J. Portf. Manag. 31, 103–112 (2004)

    Article  Google Scholar 

  4. Carrasco, M., Chen, X.: Mixing and moment properties of various GARCH and stochastic volatility models. Econ. Theory 18, 17–39 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Capitani, L., Zenga, M.: Point and interval estimation for some financial performance measures. Statistica & Applicazioni IX(2), 129–158 (2011)

  6. De Capitani, L.: Interval estimation for the sharpe ratio when returns are not i.i.d. with special emphasis on the \(GARCH(1,1)\) process with symmetric innovations. Stat. Methods Appl. 21(4), 517–537 (2012)

    Article  MathSciNet  Google Scholar 

  7. De Capitani, L.: Interval estimation for the Sortino Ratio and the Omega Ratio. Commun. Stat. Simul. Comput. 43(6), 1385–1429 (2014)

    Article  MATH  Google Scholar 

  8. Denker, M., Keller, G.: On \(U\)-statistics and v. Mises’ statistics for weakly dependent processes. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 64, 505–522 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farinelli, S., Ferreira, M., Rossello, D., Thoeny, M., Tibiletti, L.: Beyond Sharpe ratio: Optimal asset allocation using different performance ratios. J. Bank. Financ 32, 2057–2063 (2008)

    Article  Google Scholar 

  10. Favre, L., Galeano, J.A.: Mean-modified value-at-risk optimization with hedge fund. J. Altern. Invest. 5, 21–25 (2002)

    Article  Google Scholar 

  11. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Netherlands (1971)

    MATH  Google Scholar 

  12. Keating, C., Shadwick, W.F.: A Universal Performance Measure. J. Perform. Meas. 6, 59–84 (2002)

    Google Scholar 

  13. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

    Article  Google Scholar 

  14. Lindner, A.M.: Stationarity, mixing, distributional properties and moments of GARCH(p, q)-processes. In: Andersen, T.G., Davis, R.A., Kreib, J.-P., Mikosch, Th.V. (eds.) Handbook of Financial Time Series, Spriger (2009)

  15. Lo, A.W.: The statistics of sharpe ratio. Financ. Anal. J. 58, 36–52 (2002)

    Article  Google Scholar 

  16. Lumley, T., Heagerty, P.: Weighted empirical adaptive variance estimators for correlated data regression. J. R. Stat. Soc. B 61, 459–477 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)

    Google Scholar 

  18. Nelson, D.B.: Stationarity and persistence in the GARCH(1,1) model. Econ. Theory 6(3), 318–334 (1990)

    Article  Google Scholar 

  19. Newey, W.K., West, K.D.: A simple positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703–708 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Newey, W.K., West, K.D.: Automatic lag selection in covariance matrix estimation. Rev. Econ. Stud. 61, 631–653 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004). ISBN 3-900051-00-3, http://www.R-project.org/

  22. Shalit, H., Yitzhaki, S.: Mean-Gini, risky asset. J. Financ. 39, 1449–1468 (1984)

    Article  MathSciNet  Google Scholar 

  23. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Financ. 19, 425–442 (1964)

    Google Scholar 

  24. Sharpe, W.F.: Mutual fund performance. J. Bus. 39, 119–138 (1966)

    Article  Google Scholar 

  25. Sortino, F., Van der Meer, R.: Downside risk. J. Portf. Manag. 17(4), 27–31 (1991)

    Article  Google Scholar 

  26. Sortino, F., Price, L.: Performance measurement in a downside risk framework. J. Invest. 3(3), 59–64 (1994)

    Article  Google Scholar 

  27. Yoshihara, K.: The Bahadur representation of sample quantiles for sequences of strongly mixing random variables. Stat. Probab. Lett. 24(4), 209–304 (1995)

  28. Zeileis, A.: Econometric Computing with HC and HAC covariance matrix estimators. J. of Stat. Softw. 11(10), http://www.jstatsoft.org/ (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio De Capitani.

Appendix

Appendix

Lemma 1

Let \(F\) be a continuous df and let \((X_1,...,X_n)\) a sample with possibly dependent elements drawn from \(F\). Let \(\widehat{F}_n\) be the ecdf based on \((X_1,...,X_n)\) and assume that \(\widehat{F}_{n}(x)=F(x)+O_{p}(n^{-1/2})\) for all \(x\in \mathbb {R}\) as \(n\rightarrow \infty \). Let \(\widehat{z}_{n}\) be an estimator of \(z\) such that \(\widehat{z}_{n}=z+O_{p}(n^{-1/2})\) for \(n\rightarrow \infty \). Consider the functional \(I_{X}=\int _{-\infty }^{z}(z-x) dF(x)\) and its estimator \(\widehat{I}_{n}=\int _{-\infty }^{\widehat{z}_{n}}(\widehat{z}_{n}-x) d\widehat{F}_{n}(x)\). The following asymptotic representation for \(\widehat{I}_{n}\) holds:

$$\begin{aligned} \widehat{I}_{n}=\left( \widehat{z}_{n}-z\right) F(z)-\frac{1}{n}\sum _{t=1}^{n}\mathbf {1}_{(X_{t}\le z)}(X_{t}-z)+o_{p}(n^{-1/2}) \end{aligned}$$

Proof

$$\begin{aligned} \widehat{I}_{n}&= \int _{z}^{\widehat{z}_{n}}(\widehat{z}_{n}-x) d\widehat{F}_{n}(x)+\int _{-\infty }^{z}(\widehat{z}_{n}-x) d\widehat{F}_{n}(x)\\&-\int _{-\infty }^{z}(z-x) d\widehat{F}_{n}(x)+\int _{- \infty }^{z}(z-x) d\widehat{F}_{n}(x) \end{aligned}$$

and since

$$\begin{aligned} \int _{-\infty }^{z}(\widehat{z}_{n}-x) d\widehat{F}_{n}(x)-\int _{-\infty }^{z}(z-x) d\widehat{F}_{n}(x)&= (\widehat{z}_{n}-z)\widehat{F}_{n}(z)\\&= (\widehat{z}_{n}-z)F(z)\\&+(\widehat{z}_{n}-z)(\widehat{F}_{n}(z)-F(z)), \end{aligned}$$

we may write

$$\begin{aligned} \widehat{I}_{n}=(\widehat{z}_{n}-z)F(z)+\int _{-\infty }^{z}(z-x) d\widehat{F}_{n}(x)+R_{1; n}+R_{2;n} \end{aligned}$$

where

$$\begin{aligned} R_{1;n}=(\widehat{z}_{n}-z)(\widehat{F}_{n}(z)-F(z)) \end{aligned}$$

and

$$\begin{aligned} R_{2;n}=\int _{z}^{\widehat{z}_{n}}(\widehat{z}_{n}-x) d\widehat{F}_{n}(x). \end{aligned}$$

Thus, it remains to show that \(R_{1;n}\) and \(R_{2;n}\) are both of order \(o_{P}(n^{-1/2})\). \(R_{1;n}=o_{P}(n^{-1/2})\) follows immediately from the assumptions that \(\widehat{F}_{n}(x)=F(x)+O_{p}(n^{-1/2})\) for all \(x\in \mathbb {R}\) and \(\widehat{z}_{n}=z+O_{p}(n^{-1/2})\), while proving \(R_{2;n}=o_{P}(n^{-1/2})\) requires a further argument: we first estimate \(|R_{2;n}|\) by

$$\begin{aligned} \left| R_{2;n}\right| \le \left| \widehat{z}_{n}-z\right| |\widehat{F}_{n}(\widehat{z}_{n})-\widehat{F}_{n}(z)| \end{aligned}$$

and since, by assumption, \(\widehat{z}_{n}-z=O_{p}(n^{-1/2})\), it remains to show that

$$\begin{aligned} \widehat{F}_{n}(\widehat{z}_{n})-\widehat{F}_{n}(z)=o_{p}(1). \end{aligned}$$

To this end we observe that

$$\begin{aligned} |\widehat{F}_{n}(\widehat{z}_{n})-\widehat{F}_{n}(z)|\le |\widehat{F}_{n}(\widehat{z}_{n})-F(\widehat{z}_{n})|+|F(\widehat{z}_{n})-F(z)|+|F(z)-\widehat{F}_{n}(z)|, \end{aligned}$$

where \(\widehat{F}_{n}(z)-F(z)=O_{p}(n^{-1/2})\) by assumption, \(F(\widehat{z}_{n})-F(z)=o_{p}(1)\) by the continuity assumption on \(F\) and by the assumption that \(\widehat{z}_{n}=z+O_{P}(n^{-1/2})\), and finally

$$\begin{aligned} |\widehat{F}_{n}(\widehat{z}_{n})-F(\widehat{z}_{n})|\le \sup _{x\in \mathbb {R}}|\widehat{F}_{n}(x)-F(x)|=o_{p}(1) \end{aligned}$$

since pointwise convergence of \(\widehat{F}_{n}(x)\) to \(F(x)\) implies uniform convergence. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Capitani, L., Pasquazzi, L. Inference for performance measures for financial assets. METRON 73, 73–98 (2015). https://doi.org/10.1007/s40300-014-0055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-014-0055-y

Keywords

Navigation