Skip to main content
Log in

A Delayed Impulse Control Strategy for Spacecraft Formations

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

An impulsive control strategy for spacecraft formation flying is suggested considering secular drift between satellites. The drift motion caused by orbital period difference affects impulsive correction. Preventing the drift has been treated as a natural effort in most of formation flying researches. However, this study proposes preserving the drift behavior by delaying the period-matching maneuver. The paper shows that the impulse delay could be effective under some conditions by reducing the required delta-v. Two impulsive control methods are designed by harnessing the drift in pure Keplerian orbits. By using a linear approximation, the proposed methods avoid iterative steps for obtaining the required impulse, so the new strategy can be implemented with less computational burden compared to numerical optimal solutions. Impulse magnitudes between an existing method and the proposed strategy are compared mathematically and the numerical simulation verifies that the impulse reduction could be achieved with the suggested methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series, AIAA (2003)

    Book  Google Scholar 

  2. Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.S.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Elsevier Astrodynamics Series, Elsevier (2010)

    Google Scholar 

  3. Schaub, H., Vadali, S.R., Junkins, J.L., Alfriend, K.T.: Spacecraft formation flying control using mean orbit elements. J. Astronaut. Sci. 48(1), 69–87 (2000)

    Google Scholar 

  4. Gurfil, P.: Control-theoretic analysis of low-thrust orbital transfer using orbital elements. J. Guid. Control. Dyn. 26(6), 979–983 (2003)

    Article  Google Scholar 

  5. Vadali, S.R., Vaddi, S.S., Alfriend, K.T.: An Intelligent Control Concept for Formation Flying Satellites. Int. J. Robust Nonlinear Control 12(2), 97–115 (2002)

    Article  MATH  Google Scholar 

  6. Irvin, D.J., Jacques, D.R.: Linear vs. nonlinear control techniques for the reconfiguration of satellit formations. In: AIAA Guidance, Navigation, and Control Conference (2001)

  7. Park, H.E., Park, S.Y., Choi, K.H.: Satellite formation reconfiguration and station-keeping using state-dependent Riccati equation technique. Aerosp. Sci. Technol. 15(6), 440–452 (2011)

    Article  MathSciNet  Google Scholar 

  8. Lee, K.W., Singh, S.N.: Tuning functions-based output feedback adaptive spacecraft formation flying despite disturbances. Proc. Inst. Mech. Eng. K J. Aerosp. Eng. 226(1), 15–29 (2012)

    Google Scholar 

  9. Schaub, H., Alfriend, K.T.: Impulsive feedback control to establish specific mean orbit elements of spacecraft formations. J. Guid. Control. Dyn. 24(4), 739–745 (2001)

    Article  Google Scholar 

  10. Anderson, P.V., Schaub, H.: Impulsive feedback control of nonsingular elements in the geostationary regime. In: AIAA Astrodynamics Specialist Conference (2012)

  11. Sabol, C., Burns, R., McLaughlin, C.A.: Satellite Formation Flying Design and Evolution. J. Spacecr. Rocket. 38(2), 270–278 (2001)

    Article  Google Scholar 

  12. Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Astronaut. Sci. 27(9), 653–678 (1960)

    MATH  Google Scholar 

  13. Gurfil, P.: Relative motion between elliptic orbits: Generalized boundedness conditions and optimal formationkeeping. J. Guid. Control. Dyn. 28(4), 761–767 (2005)

    Article  MathSciNet  Google Scholar 

  14. Xing, J., Tang, G., Xi, X., Li, H.: Satellite formation design and optimal stationkeeping considering nonlinearity and eccentricity. J. Guid. Control. Dyn. 30 (5), 1523–1527 (2007)

    Article  Google Scholar 

  15. Vaddi, S.S., Alfriend, K.T., Vadali, S.R., Sengupta, P.: Formation establishment and reconfiguration using impulsive control. J. Guid. Control. Dyn. 28 (2), 262–268 (2005)

    Article  Google Scholar 

  16. Breger, L.S., How, J.P.: Gauss’s variational equation-based dynamics and control for formation flying spacecraft. J. Guid. Control. Dyn. 30(2), 437–448 (2007)

    Article  Google Scholar 

  17. Choi, Y., Mok, S.H., Bang, H.: Impulsive formation control using orbital energy and angular momentum vector. Acta Astronaut. 67(5–6), 613–622 (2010)

    Article  Google Scholar 

  18. Mok, S.H., Choi, Y., Bang, H.: Impulsive control of satellite formation flying using orbital period difference. In: 18th IFAC Symposium on Automatic Control in Aerospace (2010)

  19. Inalhan, G., Tillerson, M., How, J.P.: Relative dynamics and control of spacecraft formations in eccentric orbits. J. Guid. Control. Dyn. 25(1), 48–59 (2002)

    Article  Google Scholar 

  20. Ichimura, Y., Ichikawa, A.: Optimal impulsive relative orbit transfer along a circular orbit. J. Guid. Control. Dyn. 31(4), 1014–1027 (2008)

    Article  Google Scholar 

  21. Jifuku, R., Ichikawa, A., Bando, M.: Optimal pulse strategies for relative orbit transfer along a circular orbit. J. Guid. Control. Dyn. 34(5), 1329–1341 (2011)

    Article  Google Scholar 

  22. Jones, J.B.: Optimal Rendezvous in the neighborhood of a circular orbit. J. Astronaut. Sci. 24(1), 55–90 (1976)

    Google Scholar 

  23. Leeghim, H.: Spacecraft intercept using minimum control energy and wait time. Celest. Mech. Dyn. Astron. 115(1), 1–19 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by NSL (National Space Lab) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (S10801000123-08A0100-12310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Mok.

Appendices

Appendix A: Tangential Impulse Difference in Case A

In Appendix A, the |Δv θ |diff between DIM and AIM in Case A are derived. For convenience, the tangential impulses of both methods in Eqs. 75 and 76 are rewritten as

$$\begin{array}{@{}rcl@{}} \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{DIM}} &=&\left| {\Delta \mathit{v}_{\theta_{\text{in}} } } \right|_{\text{DIM}} \\ &=&\frac{n_{0} a_{0} \eta }{4}\left( {\left| {\frac{\Delta a_{0,\mathrm{d}} }{a_{0} }+\frac{\Delta e}{1+e}} \right|+\left| {\frac{\Delta a_{0,\mathrm{d}} }{a_{0} }-\frac{\Delta e}{1-e}} \right|} \right) \end{array} $$
$$\begin{array}{@{}rcl@{}} \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{AIM}} &=&\left| {\Delta \mathit{v}_{\theta_{\text{add}} } } \right|_{\text{AIM}} +\left| {\Delta \mathit{v}_{\theta_{\text{in}} } } \right|_{\text{AIM}} \\ &=&\frac{n_{0} \eta }{2}\left( {a_{\text{add}} -a_{0} } \right)+\frac{n_{0} a_{0} \eta }{4}\left( {\left| {\frac{\Delta a_{\text{add,d}} }{a_{0} }+\frac{\Delta e}{1+e}} \right|+\left| {\frac{\Delta a_{\text{add,d}} }{a_{0} }-\frac{\Delta e}{1-e}} \right|} \right) \\ \end{array} $$

The \(\left | {\Delta \mathit {v}_{\theta _{\text {in}} } } \right |_{\text {DIM}} \) and \(\left | {\Delta \mathit {v}_{\theta _{\text {in}} } } \right |_{\text {AIM}} \) depend on the four absolute terms consisting of the Δe. The Δe can be random in each mission, and for generality, the |Δv θ |DIM and |Δv θ |AIM for all possible Δe should be derived. The four Δe criteria, which make the absolute terms in Eqs. 75 and 76 be zero, are defined by

$$ {\Delta} e_{1} =-(1+e)\frac{\Delta a_{0,\mathrm{d}} }{a_{0} } $$
(99)
$$ {\Delta} e_{2} =(1-e)\frac{\Delta a_{0,\mathrm{d}} }{a_{0} } $$
(100)
$$ {\Delta} e_{3} =-(1+e)\frac{\Delta a_{\text{add,d}} }{a_{0} } $$
(101)
$$ {\Delta} e_{4} =(1-e)\frac{\Delta a_{\text{add,d}} }{a_{0} } $$
(102)

In Case A, the magnitude order of the Δe criteria can be determined by using the inequality a add>a 0>a d in Eq. 74:

$$ \text{in}{\kern 1pt}\text{Case}{\kern 1pt}\mathrm{A}:{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\Delta} e_{4} <{\Delta} e_{2} <{\Delta} e_{1} <{\Delta} e_{3} $$
(103)

Then, the Δe region can be divided into five intervals as

$$ {\Delta} e_{\text{CaseA}} =\left\{ {{\begin{array}{c} {\Delta e<{\Delta} e_{4} } \\ {\Delta e_{4} \le {\Delta} e<{\Delta} e_{2} } \\ {\Delta e_{2} \le {\Delta} e<{\Delta} e_{1} } \\ {\Delta e_{1} \le {\Delta} e<{\Delta} e_{3} } \\ {\Delta e_{3} \le {\Delta} e} \\ \end{array} }} \right. $$
(104)

Now, the five |Δv θ |DIM and |Δv θ |AIM for each Δe interval are derived. Then, the smallest |Δv θ |diff is extracted. Because the |Δv θ |diff derivation procedures for the five intervals are the same, the |Δv θ |diff with the first Δe interval is only derived in detail. The derivations of the rest intervals are omitted and only the final results are shown. When the Δe is less than Δe 4, the |Δv θ | of DIM and AIM are obtained as

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{DIM},{\Delta} e<{\Delta} e_{4} } =\frac{n_{0} a_{0} \eta }{4}\left( {-\left( {\frac{\Delta a_{0,\mathrm{d}} }{a_{0} }+\frac{\Delta e}{1+e}} \right)+\left( {\frac{\Delta a_{0,\mathrm{d}} }{a_{0} }-\frac{\Delta e}{1-e}} \right)} \right) $$
(105)
$$\begin{array}{@{}rcl@{}} \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{AIM},{\Delta} e<{\Delta} e_{4} } &=&\frac{n_{0} \eta }{2}\left( {a_{\text{add}} -a_{0} } \right)+\frac{n_{0} a_{0} \eta }{4}\\&&\times\left( {-\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }+\frac{\Delta e}{1+e}} \right)+\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }-\frac{\Delta e}{1-e}} \right)} \right) \end{array} $$
(106)

The difference of |Δv θ | between DIM and AIM become

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e<{\Delta} e_{4} } =-\frac{n_{0} \eta }{2}\left( {a_{\text{add},2} -a_{0} } \right) $$
(107)

The |Δv θ |diff for the other Δe intervals can be achieved by

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{4} \le {\Delta} e<{\Delta} e_{2} } =-\frac{n_{0} \eta }{2}\left( {a_{\text{add}} -a_{0} } \right)-\frac{n_{0} a_{0} \eta }{4}\left( {-2\frac{\Delta a_{\text{add,d}} }{a_{0} }+2\frac{\Delta e}{1-e}} \right) $$
(108)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{2} \le {\Delta} e<{\Delta} e_{1} } =-n_{0} \eta \left( {a_{\text{add}} -a_{0} } \right) $$
(109)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{1} \le {\Delta} e<{\Delta} e_{3} } =-\frac{n_{0} \eta }{2}\left( {a_{\text{add}} -a_{0} } \right)+\frac{n_{0} a_{0} \eta }{4}\left( {2\frac{\Delta a_{\text{add,d}} }{a_{0} }+2\frac{\Delta e}{1+e}} \right) $$
(110)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{3} \le {\Delta} e} =-\frac{n_{0} \eta }{2}\left( {a_{\text{add}} -a_{0} } \right) $$
(111)

Finally, the smallest |Δv θ |diff in Case A can be obtained from Eqs. 107111 as

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff,A}} =-n_{0} \eta \left( {a_{\text{add}} -a_{0} } \right) $$
(112)

Appendix B: Tangential Impulse Difference in Case C

The |Δv θ |diff in Case C for the various Δe are presented. The four Δe criteria in |Δv θ | of DIM and AIM are defined in Eqs. 99102. However, unlike Eq. 103 in Case A, the magnitude order of the criteria is not strictly fixed and it depends on \({\Delta } M_{\min }^{\prime } \). There are three possible cases:

$$ \left\{ {{\begin{array}{c} {\text{in}{\kern 1pt}\text{Case}{\kern 1pt}\mathrm{C}_{{1}} :{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\Delta} e_{{3}} <{\Delta} e_{{2}} <{\Delta} e_{{1}} <{\Delta} e_{{4}} {\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}\text{if}{\kern 1pt}{\Delta} M_{\min }^{\prime} <{\Delta} M_{\mathrm{C}_{{1}} -\mathrm{C}_{{2}} }^{\prime} } \\ {\text{in}{\kern 1pt}\text{Case}{\kern 1pt}\mathrm{C}_{{2}} :{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\Delta} e_{{3}} <{\Delta} e_{{2}} <{\Delta} e_{{4}} \le {\Delta} e_{{1}} {\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}\text{if}{\kern 1pt}{\Delta} M_{\mathrm{C}_{{1}} -\mathrm{C}_{{2}} }^{\prime} \le {\Delta} M_{\min }^{\prime} <{\Delta} M_{\mathrm{C}_{{2}} -\mathrm{C}_{{3}} }^{\prime} } \\ {\text{in}{\kern 1pt}\text{Case}{\kern 1pt}\mathrm{C}_{{3}} :{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\Delta} e_{{2}} \le {\Delta} e_{{3}} <{\Delta} e_{{4}} <{\Delta} e_{{1}} {\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}\text{if}{\kern 1pt}{\Delta} M_{\mathrm{C}_{{2}} -\mathrm{C}_{{3}} }^{\prime} \le {\Delta} M_{\min }^{\prime} } \\ \end{array} }} \right. $$
(113)

where

$$ {\Delta} M_{\mathrm{C}_{{1}} -\mathrm{C}_{{2}} }^{\prime} =\left( {\frac{-Ne-e-E-N+1}{1-e}} \right){\Delta} M_{\text{half}} $$
(114)
$$ {\Delta} M_{\mathrm{C}_{{2}} -\mathrm{C}_{{3}} }^{\prime} =\left( {\frac{Ne+e-E-N+1}{1+e}} \right){\Delta} M_{\text{half}} $$
(115)

The \({\Delta } M_{\mathrm {C}_{{1}} -\mathrm {C}_{{2}} }^{\prime } \) is the \({\Delta } M_{\min }^{\prime } \) boundary when Δe 4 = Δe 1, and the \({\Delta } M_{\mathrm {C}_{{2}} -\mathrm {C}_{{3}} }^{\prime } \) is the \({\Delta } M_{\min }^{\prime } \) boundary when Δe 3 = Δe 2. Now, the smallest |Δv θ |diff for the three cases in Eq. 113 are derived. Again, as Appendix A, the |Δv θ |diff derivation procedures of the three cases are the same. The first case, Case C1, is only analyzed in detail, and the final results are only given for the other cases. In Case C1, the Δe region can be divided into five intervals by

$$ {\Delta} e_{\text{CaseC}_{{1}} } =\left\{ {{\begin{array}{c} {\Delta e<{\Delta} e_{{3}} } \\ {\Delta e_{{3}} \le {\Delta} e<{\Delta} e_{{2}} } \\ {\Delta e_{{2}} \le {\Delta} e<{\Delta} e_{{1}} } \\ {\Delta e_{{1}} \le {\Delta} e<{\Delta} e_{{4}} } \\ {\Delta e_{{4}} \le {\Delta} e} \\ \end{array} }} \right. $$
(116)

Applying each Δe condition into the |Δv θ | of DIM and AIM in Eqs. 99102, the |Δv θ |diff for the five intervals can be derived by

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e<{\Delta} e_{3} } =-\frac{n_{0} \eta }{2}{\Delta} a_{0,\text{add}} $$
(117)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{3} \le {\Delta} e<{\Delta} e_{2} } =-\frac{n_{0} \eta }{2}{\Delta} a_{0,\text{add}} -\frac{n_{0} a_{0} \eta }{2}\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }+\frac{\Delta e}{1+e}} \right) $$
(118)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{2} \le {\Delta} e<{\Delta} e_{1} } =-\frac{n_{0} \eta }{2}{\Delta} a_{0,\text{add}} -\frac{n_{0} a_{0} \eta }{2}\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }+\frac{\Delta a_{0,\mathrm{d}} }{a_{0} }+\left( {\frac{1}{1+e}-\frac{1}{1-e}} \right){\Delta} e} \right) $$
(119)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e_{1} \le {\Delta} e<{\Delta} e_{4} } =-\frac{n_{0} \eta }{2}{\Delta} a_{0,\text{add}} -\frac{n_{0} a_{0} \eta }{2}\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }-\frac{\Delta e}{1-e}} \right) $$
(120)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff},{\Delta} e\le {\Delta} e_{4} } =-\frac{n_{0} \eta }{2}{\Delta} a_{0,\text{add}} $$
(121)

where the Δa 0,add = Δa add−Δa 0. The minimum |Δv θ |diff in Case C1 is obtained at Δe = Δe 2 and the value is

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff,C}_{1} } =-\frac{n_{0} \eta }{2}\left( {a_{0} -a_{\text{add}} } \right)-\frac{n_{0} a_{0} \eta }{2}\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }+\left( {\frac{1-e}{1+e}} \right)\frac{\Delta a_{\text{0,d}} }{a_{0} }} \right) $$
(122)

The smallest |Δv θ |diff for Cases C2 and C3 could be obtained by the same approach of Case C1.

$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff,C}_{2} } =-\frac{n_{0} \eta }{2}\left( {a_{0} -a_{\text{add}} } \right)-\frac{n_{0} a_{0} \eta }{2}\left( {\frac{\Delta a_{\text{add,d}} }{a_{0} }+\left( {\frac{1-e}{1+e}} \right)\frac{\Delta a_{0,\mathrm{d}} }{a_{0} }} \right) $$
(123)
$$ \left| {\Delta \mathit{v}_{\theta } } \right|_{\text{diff,C}_{3} } =-\frac{n_{0} \eta }{2}\left( {a_{0} -a_{\text{add}} } \right) $$
(124)

where the \(\left | {\Delta \mathit {v}_{\theta } } \right |_{\text {diff,C}_{2} } \) is equal to the \(\left | {\Delta \mathit {v}_{\theta } } \right |_{\text {diff,C}_{1} } \), and there exists the two minimum |Δv θ |diff candidates of Eqs. 122 and 124 in Case C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mok, SH., Choi, Y., Bang, H. et al. A Delayed Impulse Control Strategy for Spacecraft Formations. J of Astronaut Sci 60, 337–365 (2013). https://doi.org/10.1007/s40295-015-0055-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0055-z

Keywords

Navigation