Skip to main content
Log in

Personalized Medicine in Neurodegenerative Diseases: How Far Away?

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are characterized by progressive dysfunction of the nervous system as a result of neuronal loss in the brain and spinal cord. Despite extensive research efforts aimed at development of new disease-modifying therapeutics, there is still no effective treatment to halt neurodegenerative processes. Thus, modification of current therapeutic and diagnostic research strategies is a goal of increasing urgency. The biggest limitation in neurodegenerative disease research is the lack of appropriate biomarkers. Discovery of universal biomarkers capable of diagnosing patients with neurodegenerative diseases, monitoring their response to therapy, and predicting disease progression seems to be a tall order. Instead, a combination of different methodologies in the discovery of biomarkers specific for each described aspect of the disease seems to be a more viable approach. Although application of personalized medicine in diagnosis and treatment of neurodegenerative diseases may seem far off, some recent developments, such as utilizing specific biological therapies in multiple sclerosis, microRNA profiling as a source of novel biomarkers in Parkinson’s disease, or combination of neuroimaging and proteomic analyses in diagnosis of Alzheimer’s disease patients, already point to the way clinical neurology may integrate new achievements in everyday practice. Combination of genomic, proteomic, glycomic, and metabolomic approaches may yield novel insights into molecular mechanisms of disease pathophysiology, which could then be integrated and translated into clinical neurology. Based on the developments during the past decade, it is feasible to predict that a personalized approach to treating neurological disorders will become more widely applicable in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jain KK. Textbook of personalized medicine. New York: Springer; 2009.

    Book  Google Scholar 

  2. ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  3. Nielsen J. Translational and systems medicine. J Intern Med. 2012;271:108–10.

    Article  CAS  PubMed  Google Scholar 

  4. Galas DJ, Hood L. Systems biology and emerging technologies will catalyze the transition from reactive medicine to predictive, personalized, preventive and participatory (P4) medicine. IBC. 2009;1:6.

    Google Scholar 

  5. Jain KK. Personalized clinical laboratory diagnostics. Adv Clin Chem. 2009;47:95–119.

    Article  CAS  PubMed  Google Scholar 

  6. Holsboer F. How can we realize the promise of personalized antidepressant medicines? Nat Rev Neurosci. 2008;9:638–46.

    Article  CAS  PubMed  Google Scholar 

  7. Wimo A, Prince M. World Alzheimer report 2010: the global economic impact of dementia. London: Alzheimer’s Disease International; 2010. http://www.alz.org/documents/national/world_alzheimer_report_2010.pdf. Accessed 23 Sep 2013.

  8. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2:252.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68:270–81.

    Article  CAS  PubMed  Google Scholar 

  11. Borovecki F, Klepac N, Muck-Seler D, Hajnsek S, Mubrin Z, Pivac N. Unraveling the biological mechanisms in Alzheimer’s disease—lessons from genomics. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:340–7.

    Article  CAS  PubMed  Google Scholar 

  12. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6:67–77.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kim S, Jensen JR, Cisek K, Funk KE, Naphade S, Schafer K, Kuret J. Imaging as a strategy for premortem diagnosis and staging of tauopathies. Curr Alzheimer Res. 2010;7:230–4.

    Article  CAS  PubMed  Google Scholar 

  14. Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer’s amyloid-b precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2011;404:889–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Smith P, Al Hashimi A, Girard J, et al. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 2011;116:240–7.

    Article  CAS  PubMed  Google Scholar 

  16. Jain KK. Donepezil. In: Gilman S (ed). Medlink neurology. San Diego: Medlink Corporation; 2012. http://www.medlink.com/. Accessed 18 Sep 2013.

  17. Martinelli-Boneschi F, Giacalone G, Magnani G, Biella G, Coppi E, Santangelo R, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol Aging. 2013;34:1711, e7–13.

    Google Scholar 

  18. Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology. Epub 2013 Feb 5; doi:10.1111/neup.12020.

  19. Kumar KR, Lohmann K, Klein C. Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol. 2012;25:466–74. doi:10.1097/WCO.0b013e3283547627.

    Article  CAS  PubMed  Google Scholar 

  20. Do CB, Tung JY, Dorfman E, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011;7:e1002141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson’s disease. J Chem Neuroanat. 2011;42:127–30. doi:10.1016/j.jchemneu.2011.01.005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20:3067–78. doi:10.1093/hmg/ddr210.

    Article  PubMed  Google Scholar 

  23. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, et al. Convergence of miRNA expression profiling, α-synuclein interaction and GWAS in Parkinson’s disease. PLoS One. 2011;6:e25443. doi:10.1371/journal.pone.0025443.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinson’s Dis. 2012;2:321–31.

    CAS  Google Scholar 

  25. Sharma S, Moon CS, Khogali A, Haidous A, Chabenne A, Ojo C, et al. Biomarkers in Parkinson’s disease (recent update). Neurochem Int. 2013;63:201–29. doi:10.1016/j.neuint.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  26. Lyons MK. Deep brain stimulation: current and future clinical applications. Mayo Clin Proc. 2011;86:662–72. doi:10.4065/mcp.2011.0045.

    Article  PubMed  Google Scholar 

  27. Linazasoro G. New ideas on the origin of l-dopa-induced dyskinesia: age, genes and neural plasticity. Trends Pharmacol Sci. 2005;26:391–7.

    Article  CAS  PubMed  Google Scholar 

  28. Fins JJ, Shapiro ZE. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project. Brain Topogr. Epub 2013 Jun 9.

  29. Emborg ME, Liu Y, Xi J, Chang X, et al. Induced pluripotent stem cell-derived neural stem cells survive and mature in the nonhuman primate brain. Cell Rep. 2013;3:1–5.

    Article  Google Scholar 

  30. Habek M, Brinar VV, Borovečki F. Genes associated with multiple sclerosis: 15 and counting. Expert Rev Mol Diagn. 2010;10:857–61.

    Article  CAS  PubMed  Google Scholar 

  31. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Google Scholar 

  32. Habek M, Borovecki F, Brinar VV. Genomics in multiple sclerosis. Clin Neurol Neurosurg. 2010;112:621–4.

    Article  PubMed  Google Scholar 

  33. Derfuss T. Personalized medicine in multiple sclerosis: hope or reality? BMC Med. 2012;10:116. doi:10.1186/1741-7015-10-116.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993;116:117–34.

    Article  PubMed  Google Scholar 

  35. Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain. 2003;126:770–82.

    Article  PubMed  Google Scholar 

  36. Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year followup of patients with relapse onset of multiple sclerosis. Brain. 2008;131:808–17.

    Article  CAS  PubMed  Google Scholar 

  37. Schlaeger R, D’Souza M, Schindler C, Grize L, Dellas S, Radue EW, et al. Prediction of long-term disability in multiple sclerosis. Mult Scler. 2012;18:31–8.

    Article  CAS  PubMed  Google Scholar 

  38. Comabella M, Vandenbroeck K. Pharmacogenomics and multiple sclerosis: moving toward individualized medicine. Curr Neurol Neurosci Rep. 2011;11:484–91. doi:10.1007/s11910-011-0211-1.

    Article  CAS  PubMed  Google Scholar 

  39. Byun E, Caillier SJ, Montalban X, et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol. 2008;65:337–44.

    Article  PubMed  Google Scholar 

  40. Vosslamber S, van Baarsen LG, Verweij CL. Pharmacogenomics of IFN-beta in multiple sclerosis: towards a personalized medicine approach. Pharmacogenomics. 2009;10:97–108.

    Article  CAS  PubMed  Google Scholar 

  41. Lutterotti A, Yousef S, Sputtek A, Stürner KH, Stellmann JP, Breiden P, et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med. 2013;5:188ra75.

    Google Scholar 

  42. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489:109–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Geschwind DH, Konopka G. Neuroscience in the era of functional genomics and systems biology. Nature. 2009;461:908–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jain KK. Synthetic biology and personalized medicine. Med Princ Pract. 2013;22:209–19. doi:10.1159/000341794.

    Article  CAS  PubMed  Google Scholar 

  45. Borovecki F, Habek M. Development of novel genomic blood biomarkers for neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2010;9:669–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

No sources of funding were used to prepare this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Gotovac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotovac, K., Hajnšek, S., Pašić, M.B. et al. Personalized Medicine in Neurodegenerative Diseases: How Far Away?. Mol Diagn Ther 18, 17–24 (2014). https://doi.org/10.1007/s40291-013-0058-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0058-z

Keywords

Navigation