Skip to main content
Log in

Towards a Determination of the Physiological Characteristics Distinguishing Successful Mixed Martial Arts Athletes: A Systematic Review of Combat Sport Literature

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Mixed martial arts (MMA) is a combat sport underpinned by techniques from other combat disciplines, in addition to strategies unique to the sport itself. These sports can be divided into two distinct categories (grappling or striking) based on differing technical demands. Uniquely, MMA combines both methods of combat and therefore appears to be physiologically complex requiring a spectrum of mechanical and metabolic qualities to drive performance. However, little is known about the physiological characteristics that distinguish higher- from lower-level MMA athletes. Such information provides guidance for training interventions, performance testing and talent identification. Furthermore, while MMA incorporates techniques from both grappling and striking sports, it is unknown precisely how these disciplines differ physiologically. Understanding the relationship between higher-level competitors in grappling and striking combat sports can provide further insight into the development of the optimal performance profile of a higher-level MMA athlete.

Objective

This article aims to analyse the scientific literature on MMA and the primary combat sports underpinning it to determine the physiological adaptations that distinguish superior competitors, with a view to defining the optimal physiological profile for higher-level MMA performance. Furthermore, this article will explore the differences in these capabilities between grappling- and striking-based combat sports in the context of MMA.

Methods

A literature search was undertaken via PubMed, Web of Science, SportDiscus and Google Scholar. The following sports were included for systematic review based on their relevance to MMA: mixed martial arts, boxing, Brazilian jiu-jitsu, judo, karate, kickboxing, Muay Thai and wrestling. The inclusion criteria allowed studies that compared athletes of differing competition levels in the same sport using a physiological performance measure. Only male, adult (aged 17–40 years), able-bodied competitors were included. The search history spanned from the earliest record until September 2015.

Results

Of the eight combat sports searched for, five were represented across 23 studies. Sixteen investigations described maximal strength or neuromuscular power variables, while 19 articles reported anaerobic or aerobic measures. The results indicate that a number of strength, neuromuscular power and anaerobic variables distinguished higher- from lower-level combat sport athletes. However, these differences were less clear when groups were stratified within, rather than between competition grades. Greater aerobic power was generally not present amongst superior combat sport competitors.

Conclusion

There appear to be differing physiological profiles between more successful grappling and striking combat sport athletes. This is represented by high-force demands of grappling sports causing an upwards shift of the entire force–velocity relationship driven by an increase in maximal strength. In comparison, smaller increases in maximal force production with more notable enhancements in lighter load, higher velocity actions may better identify superior performance in striking sports. Anaerobic capabilities largely distinguished higher- from lower-level combat sport athletes. In particular, longer-term anaerobic efforts seem to define successful grappling-based athletes, while superior competitors in striking sports tend to show dominance in shorter-term measures when compared with their lower-level counterparts. Given the demand for both forms of combat in MMA, a spectrum of physiological markers may characterize higher-level competitors. Furthermore, the performance profile of successful MMA athletes may differ based on combat sport history or competition strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davison RR, Van Someren KA, Jones AM. Physiological monitoring of the Olympic athlete. J Sports Sci. 2009;27(13):1433–42.

    Article  PubMed  Google Scholar 

  2. Pishna K. UFC 129 Gate Receipts Total $11 Million, Eclipse Record 2011 2014, 1 November. http://www.mmaweekly.com/ufc-129-gate-receipts-total-11-million-eclipse-record. Accessed 1 Nov 2014.

  3. Reinsmith T. Worldwide, MMA is bigger than MLB, and a look at Ronda Rousey’s superstar status. 2013. http://www.bloodyelbow.com/2013/10/15/4841272/ufc-mma-bigger-mlb-ronda-rousey-superstar-anderson-silva-georges-st-pierre-jon-jones. Accessed 2 Sept 2014.

  4. Amtmann J, Berry S. Strength and conditioning for reality fighting. Strength Cond J. 2003;25(2):67–72.

    Article  Google Scholar 

  5. Amtmann JA. Self-reported training methods of mixed martial artists at a regional reality fighting event. J Strength Cond Res. 2004;18(1):194–6.

    PubMed  Google Scholar 

  6. Bounty PL, Campbell BI, Galvan E, et al. Strength and conditioning considerations for mixed martial arts. Strength Cond J. 2011;33(1):56–67.

    Article  Google Scholar 

  7. Lenetsky S, Harris N. The mixed martial arts athlete: a physiological profile. Strength Cond J. 2012;34(1):32–47.

    Article  Google Scholar 

  8. Schick MG, Brown LE, Schick EE. Strength and conditioning considerations for female mixed martial artists. Strength Cond J. 2012;34(1):66–75.

    Article  Google Scholar 

  9. James L, Kelly V, Beckman E. Periodization for mixed martial arts. Strength Cond J. 2013;35(6):35–45.

    Google Scholar 

  10. James L, Kelly V, Beckman E. High performance testing for the elite mixed martial artist. J Aust Strength Cond. 2014;22(6):55–66.

    Google Scholar 

  11. Tack C. Evidence-based guidelines for strength and conditioning in mixed martial arts. Strength Cond J. 2013;35(5):79–92.

    Article  Google Scholar 

  12. Mikeska JD. A 12-week metabolic conditioning program for a mixed martial artist. Strength Cond J. 36(5):61–7.

  13. Muller E, Benko U, Raschner C, et al. Specific fitness training and testing in competitive sports. Med Sci Sports Exerc. 2000;32(1):216–20.

    Article  CAS  PubMed  Google Scholar 

  14. Impellizzeri F, Rampinini E, Marcora S. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583–92.

    Article  PubMed  Google Scholar 

  15. Lidor R, Côté J, Hackfort D. ISSP position stand: to test or not to test? The use of physical skill tests in talent detection and in early phases of sport development. Int J Sports Exerc Psychol. 2009;7(2):131–46.

    Article  Google Scholar 

  16. Hahn A. Identification and selection of talent in Australian rowing. Excel. 1990;6(3):5–11.

    Google Scholar 

  17. Hoare D. Talent search: a review and update. Sports Coach. 1998;21:32–3.

    Google Scholar 

  18. Bullock N, Gulbin JP, Martin DT, et al. Talent identification and deliberate programming in skeleton: ice novice to Winter Olympian in 14 months. J Sports Sci. 2009;27(4):397–404.

    Article  PubMed  Google Scholar 

  19. Del Vecchio F, Hirata S, Franchini E. A review of time-motion analysis and combat development in mixed martial arts matches at regional level tournaments. Percept Mot Skills. 2011;112(2):639–48.

    Article  PubMed  Google Scholar 

  20. Unified rules of MMA and other regulations. 2014, 1 November. http://www.ufc.com/discover/sport/rules-and-regulations#12. Accessed 1 Nov 2014.

  21. Cormie P, McGuigan M, Newton R. Developing maximal neuromuscular power: part 2—Training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46.

    Article  PubMed  Google Scholar 

  22. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    Article  PubMed  Google Scholar 

  23. Gastin P. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–41.

    Article  CAS  PubMed  Google Scholar 

  24. Stone MH, Stone M, Sands W. Principles and practices of resistance training. Windsor: Human Kinetics; 2007. p. 275–6.

    Google Scholar 

  25. Stone MH, Moir G, Glaister M, et al. How much strength is necessary? Phys Ther Sport. 2002;3(2):88–96.

    Article  Google Scholar 

  26. Baker D. Differences in strength and power among junior-high, senior-high, college-aged, and elite professional rugby league players. J Strength Cond Res. 2002;16(4):581–5.

    PubMed  Google Scholar 

  27. Baker D, Newton R. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J Strength Cond Res. 2008;22(1):153–8.

    Article  PubMed  Google Scholar 

  28. Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42(8):1566–81.

    Article  PubMed  Google Scholar 

  29. Paavolainen L, Häkkinen K, Hämäläinen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86(5):1527–33.

    CAS  PubMed  Google Scholar 

  30. Hickson R, Dvorak B, Gorostiaga E, et al. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol. 1988;65(5):2285–90.

    CAS  PubMed  Google Scholar 

  31. Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48(11):871–7.

    Article  PubMed  Google Scholar 

  32. Bampouras TM, Reeves ND, Baltzopoulos V, et al. Muscle activation assessment: effects of method, stimulus number, and joint angle. Muscle Nerve. 2006;34(6):740–6.

    Article  PubMed  Google Scholar 

  33. Allen GM, Gandevia SC, McKenzie DK. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve. 1995;18(6):593–600.

    Article  CAS  PubMed  Google Scholar 

  34. Bompa T, Haff GG. Periodization: theory and methodology of training, vol. 5. Windsor: Human Kinetics; 2009.

    Google Scholar 

  35. Stone MH, Sands WA, Pierce KC, et al. Relationship of maximum strength to weightlifting performance. Med Sci Sports Exerc. 2005;37(6):1037–43.

    PubMed  Google Scholar 

  36. Garcia-Pallares J, Lopez-Gullon JM, Muriel X, et al. Physical fitness factors to predict male Olympic wrestling performance. Eur J Appl Physiol. 2011;111(8):1747–58.

    Article  PubMed  Google Scholar 

  37. Jaric S. Muscle strength testing. Sports Med. 2002;32(10):615–31.

    Article  PubMed  Google Scholar 

  38. Cormie P, McGuigan M, Newton R. Developing maximal neuromuscular power: part 1. Sports Med. 2011;41(1):17–38.

    Article  PubMed  Google Scholar 

  39. Hansen KT, Cronin JB, Pickering SL, et al. Do force-time and power-time measures in a loaded jump squat differentiate between speed performance and playing level in elite and elite junior rugby union players? J Strength Cond Res. 2011;25(9):2382–91.

    PubMed  Google Scholar 

  40. Knuttgen HG, Kraemer WJ. Terminology and measurement in exercise performance. J Strength Cond Res. 1987;1(1):1–10.

    Google Scholar 

  41. Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed methods training strategy. Strength Cond J. 1994;16:20–31.

    Article  Google Scholar 

  42. Hill A. The heat of shortening and the dynamic constants of muscle. Biol Sci: Proc R Soc Lond Ser B; 1938. p. 136–95.

    Google Scholar 

  43. Aagaard P, Simonsen E, Andersen J, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93:1318–26.

    Article  PubMed  Google Scholar 

  44. Haff GG, Stone M, O’Bryant HS, et al. Force-time dependent characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 1997;11(4):269–72.

    Google Scholar 

  45. Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74:359–68.

    Article  CAS  PubMed  Google Scholar 

  46. Fielding RA, LeBrasseur NK, Cuoco A, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc. 2002;50(4):655–62.

    Article  PubMed  Google Scholar 

  47. Dugan EL, La Doyle T, Humphries B, et al. Determining the optimal load for jump squats: a review of methods and calculations. J Strength Cond Res. 2004;18(3):668–74.

    PubMed  Google Scholar 

  48. Bosco C, Belli A, Astrua M, et al. A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol Occup Physiol. 1995;70(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  49. Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103–18.

    Article  PubMed  Google Scholar 

  50. Harmen E. The effects of arms and countermovement on vertical jump. Med Sci Sports Exerc. 1990;22(6):825–33.

    Article  Google Scholar 

  51. Dowling JJ, Vamos L. Identification of kinetic and temporal factors related to vertical jump performance. J Appl Biomech. 1993;9:95–110.

    Article  Google Scholar 

  52. Newton RU, Kraemer WJ, Häkkinen K, et al. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12:31–43.

    Article  Google Scholar 

  53. Lake JP, Lauder MA, Smith NA. Barbell kinematics should not be used to estimate power output applied to the barbell-and-body system center of mass during lower-body resistance exercise. J Strength Cond Res. 2012;26(5):1302–7.

    Article  PubMed  Google Scholar 

  54. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    Article  PubMed  Google Scholar 

  55. Ratamess N, Alvar B, Evetoch T, et al. Progression models in resistance training for healthy adults [ACSM position stand]. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  56. Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol. 1992;70(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  57. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75(2):712–9.

    CAS  PubMed  Google Scholar 

  58. Bessman SP. The creatine phosphate energy shuttle–the molecular asymmetry of a “pool”. Anal Biochem. 1987;161(2):519–23.

    Article  CAS  PubMed  Google Scholar 

  59. Philp A, Macdonald AL, Watt PW. Lactate—a signal coordinating cell and systemic function. J Exp Biol. 2005;208(24):4561–75.

    Article  CAS  PubMed  Google Scholar 

  60. Franchini E, Del Vecchio FB, Matsushigue KA, et al. Physiological profiles of elite judo athletes. Sports Med. 2011;41(2):147–66.

    Article  PubMed  Google Scholar 

  61. Andreato LV, Franchini E, de Moraes SM, et al. Physiological and technical-tactical analysis in Brazilian jiu-jitsu competition. Asian J Sports Med. 2013;4(2):137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. James LP. An evidenced-based training plan for Brazilian jiu-jitsu. Strength Cond J. 2014;36(4):14–22.

    Article  Google Scholar 

  63. Davis P, Wittekind A, Beneke R. Amateur boxing: activity profile of winners and losers. Int J Sports Physiol Perform. 2013;8:84–91.

    Article  PubMed  Google Scholar 

  64. Chaabene H, Hachana Y, Franchini E, et al. Physical and physiological profile of elite karate athletes. Sports Med. 2012;42(10):829–43.

    PubMed  Google Scholar 

  65. Silva J, Del Vecchio F, Picanço L, et al. Time-motion analysis in Muay-Thai and kick-boxing amateur matches. J Hum Sport Exerc. 2011;6(3):490–6.

    Article  Google Scholar 

  66. West SL, King V, Carey TS, et al. Systems to rate the strength of scientific evidence. Evid Rep Technol Assess. 2002;47:1–11.

    Google Scholar 

  67. Mallen C, Peat G, Croft P. Quality assessment of observational studies is not commonplace in systematic reviews. J Clin Epidemiol. 2006;59(8):765–9.

    Article  PubMed  Google Scholar 

  68. Kiers H, van Dieën J, Dekkers H, et al. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance. Sports Med. 2013;43(11):1171–89.

    Article  PubMed  Google Scholar 

  69. Guidetti L, Musulin A, Baldari C. Physiological factors in middleweight boxing performance. J Sports Med Phys Fitness. 2002;42(3):309–14.

    CAS  PubMed  Google Scholar 

  70. Fagerlund R, Hakkinen H. Strength profile of Finnish judoists—measurement and evaluation. Biol Sport. 1991;8(3):143–9.

    Google Scholar 

  71. Franchini E, Nunes AV, Moraes JM, et al. Physical fitness and anthropometrical profile of the Brazilian male judo team. J Physiol Anthropol. 2007;26(2):59–67.

    Article  PubMed  Google Scholar 

  72. Franchini E, Takito MY, Kiss MA, et al. Physical fitness and anthropometrical differences between elite and non-elite judo players. Biol Sport. 2005;22(4):315–28.

    Google Scholar 

  73. Little NG. Physical performance attributes of junior and senior women, juvenile, junior, and senior men judokas. J Sports Med Phys Fitness. 1991;31(4):510–20.

    CAS  PubMed  Google Scholar 

  74. Roschel H, Batista M, Monteiro R, et al. Association between neuromuscular tests and kumite performance on the Brazilian karate national team. J Sports Sci Med. 2009;8(CSSI3):20–4.

    PubMed  PubMed Central  Google Scholar 

  75. Demirkan E, Ünver R, Kutlu M, et al. The comparison of physical and physiological characteristics of junior elite wrestlers. J Phys Educ Sports Sci. 2012;6(2):138–44.

    Google Scholar 

  76. Nagle FJ, Morgan WP, Hellickson RO, et al. Spotting success traits in Olympic contenders. Phys Sports Med. 1975;3(12):31–4.

    Google Scholar 

  77. Silva JM 3rd, Shultz BB, Haslam RW, et al. A psychophysiological assessment of elite wrestlers. Res Q Exerc Sport. 1981;52(3):348–58.

    Article  PubMed  Google Scholar 

  78. Silva JM, Shultz BB, Haslam RW, et al. Discriminating characteristics of contestants at the United States Olympic Wrestling Trials. Int J Sport Psychol. 1985;16(2):79–102.

    Google Scholar 

  79. Stine GA. Physical performance capabilities and anthropometric characteristics of wrestlers participating in the 1977 NCAA wrestling championships. Norman: Oklahoma University of Oklahoma; 1979.

    Google Scholar 

  80. Ylinen JJ, Julin M, Rezasoltani A, et al. Effect of training in Greco-Roman wrestling on neck strength at the elite level. J Strength Cond Res. 2003;17(4):755–9.

    PubMed  Google Scholar 

  81. da Silva BVC, de Moura Simim MA, Marocolo M, et al. Optimal load for the peak power and maximal strength of the upper body in Brazilian jiu-jitsu athletes. J Strength Cond Res. 2015;29(6):1616–21.

    Article  PubMed  Google Scholar 

  82. Drid P, Casals C, Mekic A, et al. Fitness and anthropometric profiles of international vs. national judo medallists in half-heavyweight category. J Strength Cond Res. 2015;29(8):2115–21.

    Article  PubMed  Google Scholar 

  83. Ravier G, Grappe F, Rouillon JD. Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor. J Sports Med Phys Fit. 2004;44(4):349–55.

    CAS  Google Scholar 

  84. Starczewska-Czapowska J, Faff J, Borkowski L. Comparison of the physical fitness of the successful and less successful elite wrestlers. Biol Sport. 1999;16(4):225–32.

    Google Scholar 

  85. Borkowski L, Faff J, Starczewska-Czapowska J. Evaluation of the aerobic and anaerobic fitness in judoists from the Polish National Team. Biol Sport. 2001;18(2):107–17.

    Google Scholar 

  86. Franchini E, Miarka B, Matheus L, et al. Endurance in judogi grip strength tests: comparison between elite and non-elite judo players. Arch Budo. 2011;7(1):1–4.

    Google Scholar 

  87. Kim J, Cho HC, Jung HS, et al. Influence of performance level on anaerobic power and body composition in elite male judoists. J Strength Cond Res. 2011;25(5):1346–54.

    Article  PubMed  Google Scholar 

  88. Bruzas V, Stasiulis A, Cepulenas A, et al. Aerobic capacity is correlated with the ranking of boxers. Percept Mot Skills. 2014;119(1):50–8.

    Article  PubMed  Google Scholar 

  89. Ravier G, Dugue B, Grappe F, et al. Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int J Sports Med. 2006;27(10):810–7.

    Article  CAS  PubMed  Google Scholar 

  90. Chaabene H, Hachana Y, Franchini E, et al. Reliability and construct validity of the karate-specific aerobic test. J Strength Cond Res. 2012;26(12):3454–60.

    Article  PubMed  Google Scholar 

  91. Borkowski L, Faff J, Starczewska-Czapowska J, et al. Physical fitness of the polish elite wrestlers. Biol Sport. 1999;16(3):203–13.

    Google Scholar 

  92. Narici MV, Roi GS, Landoni L, et al. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310–9.

    Article  CAS  PubMed  Google Scholar 

  93. Hakkinen K, Aien M, Komi PV. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand. 1985;125(4):573–85.

    Article  CAS  PubMed  Google Scholar 

  94. McBride J, Triplett-McBride T, Davie A, et al. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82.

    PubMed  Google Scholar 

  95. Sale D. Neural adaptations to strength training. In: Komi PV, editor. Strength and Power in Sport. Oxford (UK): Blackwell Science; 2003. p. 281–313.

    Chapter  Google Scholar 

  96. Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–85.

    Article  CAS  PubMed  Google Scholar 

  97. Stanley E. The effects of 4 weeks of contrast training versus maximal strength training on punch force in 20–30 year old male amateur boxers [thesis]. Chester: University of Chester. 2014.

  98. Loturco I, Artioli GG, Kobal R, et al. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis. J Strength Cond Res. 2014;28(7):1826–32.

    Article  PubMed  Google Scholar 

  99. Schick MG, Brown LE, Coburn JW, et al. Physiological profile of mixed martial artists. Med Sport. 2010;14(4):182–7.

    Article  Google Scholar 

  100. Kraemer W, Vescovi J, Dixon P. The physiological basis of wrestling: implications for conditioning programs. Strength Cond J. 2004;26(2):10–5.

    Google Scholar 

  101. Anderson MA, Gieck JH, Perrin D, et al. The relationships among isometric, isotonic, and isokinetic concentric and eccentric quadriceps and hamstring force and three components of athletic performance. J Orthop Sports Phys Ther. 1991;14(3):114–20.

    Article  CAS  PubMed  Google Scholar 

  102. Bloomfield J, Blanksby B, Ackland T, et al. The influence of strength training on overhead throwing velocity of elite water polo players. Aust J Sci Med Sport. 1990;22(3):63–7.

    Google Scholar 

  103. Considine WJ, Sullivan WJ. Relationship of selected tests of leg strength and leg power on college men. Res Q. 1973;44(4):404–16.

    CAS  PubMed  Google Scholar 

  104. Jarić S, Ristanović D, Corcos DM. The relationship between muscle kinetic parameters and kinematic variables in a complex movement. Eur J Appl Physiol Occup Physiol. 1989;59(5):370–6.

    Article  PubMed  Google Scholar 

  105. Rutherford O, Jones D. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  106. Haff GG, Carlock JM, Hartman MJ, et al. Force-time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J Strength Cond Res. 2005;19(4):741–8.

    PubMed  Google Scholar 

  107. Stone MH, Sanborn K, O Bryant HS, et al. Maximum stength-power-performance relationships in collegiate throwers. J Strength Cond Res. 2003;17(4):739–45.

    PubMed  Google Scholar 

  108. Stone MH, Sands WA, Carlock J, et al. The importance of isometric maximum strength and peak rate-of-force development in sprint cycling. J Strength Cond Res. 2004;18(4):878–84.

    PubMed  Google Scholar 

  109. Kawamori N, Rossi SJ, Justice BD, et al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483–91.

    PubMed  Google Scholar 

  110. Secher NH. Isometric rowing strength of experienced and inexperienced oarsmen. Med Sci Sports. 1974;7(4):280–3.

    Google Scholar 

  111. Haff GG, Ruben RP, Lider J, et al. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J Strength Cond Res. 2015;29(2):386–95.

    Article  PubMed  Google Scholar 

  112. James LP, Roberts LA, Haff GG, et al. The validity and reliability of a portable isometric mid-thigh clean pull. J Strength Cond Res. 2015. doi:10.1519/JSC.0000000000001201

    Google Scholar 

  113. Putnam CA. Sequential motions of body segments in striking and throwing skills: descriptions and explanations. J Biomech. 1993;26:125–35.

    Article  PubMed  Google Scholar 

  114. Cormie P, McCaulley GO, Triplett NT, et al. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc. 2007;39(2):340.

    Article  PubMed  Google Scholar 

  115. Turner AN. Strength and conditioning for Muay Thai athletes. Strength Cond J. 2009;31(6):78–92.

    Article  Google Scholar 

  116. Komi PV, Bosco C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports. 1978;10(4):261–5.

    CAS  PubMed  Google Scholar 

  117. Bosco C, Komi PV. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand. 1979;106(4):467–72.

    Article  CAS  PubMed  Google Scholar 

  118. Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol. 1984;56(2):296–301.

    CAS  PubMed  Google Scholar 

  119. Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):1582.

    Article  PubMed  Google Scholar 

  120. Wilson G, Murphy A, Walshe A. Performance benefits from weight and plyometric training: effects of initial strength level. Coach Sport Sci J. 1997;2(1):3–8.

    Google Scholar 

  121. Newton R, Kraemer WJ, Hakkinen K. Effects of ballistic training on preseason preparation of elite volleyball players. Med Sci Sports Exerc. 1999;31(2):232–330.

    Article  Google Scholar 

  122. Duchateau J, Semmler JG, Enoka R. Training adaptations in the behavior of human motor units. J Appl Physiol. 2006;101:1766–75.

    Article  PubMed  Google Scholar 

  123. Kamen G, Knight C, Laroche D, et al. Resistance training increases vastus lateralis motor unit firing rates in young and old adults. Med Sci Sports Exerc. 1998;30:S337.

    Article  Google Scholar 

  124. Semmler JG. Motor unit synchronization and neuromuscular performance. Exerc Sport Sci Rev. 2002;30(1):8–14.

    Article  PubMed  Google Scholar 

  125. Behm DG. Neuromuscular implications and applications of resistance training. J Strength Cond Res. 1995;9(4):264–74.

    Google Scholar 

  126. Bottinelli R, Canepari M, Pellegrino MA, et al. Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol. 1996;495(Pt 2):573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Faulkner JA, Claflin DR, McCully KK, et al. Contractile properties of bundles of fiber segments from skeletal muscles. Am J Physiol. 1982;243(1):C66–73.

    CAS  PubMed  Google Scholar 

  128. Bodine SC, Roy RR, Meadows DA, et al. Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48(1):192–201.

    CAS  PubMed  Google Scholar 

  129. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):1125–9.

    Article  CAS  PubMed  Google Scholar 

  130. Kellis E, Baltzopoulos V. The effects of antagonist moment on the resultant knee joint moment during isokinetic testing of the knee extensors. Eur J Appl Physiol Occup Physiol. 1997;76(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  131. Blum H. Physics and the art of kicking and punching. Am J Phys. 1977;45(1):61–4.

    Article  Google Scholar 

  132. McGill S, Chaimberg J, Frost D, et al. Evidence of a double peak in muscle activation to enhance strike speed and force: an example with elite mixed martial arts fighters. J Strength Cond Res. 2010;24(2):348–57.

    Article  PubMed  Google Scholar 

  133. Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177–86.

    Article  PubMed  Google Scholar 

  134. MacDougall JD. Hypertrophy or hyperplasia. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Scientific Publications; 1992. p. 230-8.

  135. Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs. 2005;181(1):1–10.

    Article  PubMed  Google Scholar 

  136. Spector SA, Gardiner PF, Zernicke RF, et al. Muscle architecture and the force-velocity characteristics of the cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol. 1980;44:951–60.

    CAS  PubMed  Google Scholar 

  137. Sheppard J, Cormack S, Taylor K, et al. Assessing the force-velocity characteristics of the leg extensors in well-trained athletes: the incremental load power profile. J Strength Cond Res. 2008;22(4):1320–6.

    Article  PubMed  Google Scholar 

  138. Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(EFirst):123–9.

  139. Hori N, Newton RU, Andrews WA, et al. Comparison of four different methods to measure power output during the hang power clean and the weighted jump squat. J Strength Cond Res. 2007;21(2):314–20.

    PubMed  Google Scholar 

  140. Baker D. A series of studies on the training of high-intensity muscle power in rugby league football players. J Strength Cond Res. 2001;15(2):198–209.

    CAS  PubMed  Google Scholar 

  141. Buchheit M, Laursen P. High-intensity interval training, solutions to the programming puzzle. Part 2: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(7):927–54.

    Article  PubMed  Google Scholar 

  142. Amtmann J, Amtmann K, Spath W. Lactate and rate of perceived exertion responses of athletes training for and competing in a mixed martial arts event. J Strength Cond Res. 2008;22(2):645–7.

    Article  PubMed  Google Scholar 

  143. Kraemer WJ, Fry AC, Rubin MR, et al. Physiological and performance responses to tournament wrestling. Med Sci Sports Exerc. 2001;33(8):1367–78.

    Article  CAS  PubMed  Google Scholar 

  144. Ouergui I, Hammouda O, Chtourou H, et al. Effects of recovery type after a kickboxing match on blood lactate and performance in anaerobic tests. Asian J Sports Med. 2014;5(2):99–107.

    Google Scholar 

  145. Ghosh A, Goswami A, Ahuja A. Heart rate and blood lactate response in amateur competitive boxing. Indian J Med Res. 1995;102:179.

    CAS  PubMed  Google Scholar 

  146. Beneke R, Beyer T, Jachner C, et al. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518–23.

    PubMed  Google Scholar 

  147. Young W, James R, Montgomery I. Is muscle power related to running speed with changes of direction? J Sports Med Phys Fit. 2002;42(3):282–8.

    CAS  Google Scholar 

  148. Miarka B, Panissa VL, Julio UF, et al. A comparison of time-motion performance between age groups in judo matches. J Sports Sci. 2012;30(9):899–905.

    Article  PubMed  Google Scholar 

  149. Nilsson J, Csergö S, Gullstrand L, et al. Work-time profile, blood lactate concentration and rating of perceived exertion in the 1998 Greco-Roman wrestling World Championship. J Sports Sci. 2002;20(11):939–45.

    Article  PubMed  Google Scholar 

  150. Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–94.

    Article  PubMed  Google Scholar 

  151. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training. Sports Med. 2002;32(1):53–73.

    Article  PubMed  Google Scholar 

  152. Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36(2):117–32.

    Article  PubMed  Google Scholar 

  153. Midgley AW, Mc Naughton LR. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fit. 2006;46(1):1–14.

    CAS  Google Scholar 

  154. Altenburg TM, Degens H, van Mechelen W, et al. Recruitment of single muscle fibers during submaximal cycling exercise. J Appl Physiol. 2007;103(5):1752–6.

    Article  CAS  PubMed  Google Scholar 

  155. Gollnick P, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Alm P, Yu J-G. Physiological characters [sic] in mixed martial arts. Am J Sports Sci. 2013;1(2):12–7.

    Article  Google Scholar 

  157. Morton JP, Robertson C, Sutton L, et al. Making the weight: a case study from professional boxing. Int J Sport Nutr Exerc Metab. 2010;20(1):80–5.

    Article  PubMed  Google Scholar 

  158. Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34(6):2–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachlan P. James.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Lachlan P. James, G. Gregory Haff, Vincent G. Kelly and Emma M. Beckman declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, L.P., Haff, G.G., Kelly, V.G. et al. Towards a Determination of the Physiological Characteristics Distinguishing Successful Mixed Martial Arts Athletes: A Systematic Review of Combat Sport Literature. Sports Med 46, 1525–1551 (2016). https://doi.org/10.1007/s40279-016-0493-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0493-1

Keywords

Navigation